Because of the law of inertia and it’s effect on the skater
Answer:
r₁/r₂ = 1/2 = 0.5
Explanation:
The resistance of a wire is given by the following formula:
R = ρL/A
where,
R = Resistance of wire
ρ = resistivity of the material of wire
L = Length of wire
A = Cross-sectional area of wire = πr²
r = radius of wire
Therefore,
R = ρL/πr²
<u>FOR WIRE A</u>:
R₁ = ρ₁L₁/πr₁² -------- equation 1
<u>FOR WIRE B</u>:
R₂ = ρ₂L₂/πr₂² -------- equation 2
It is given that resistance of wire A is four times greater than the resistance of wire B.
R₁ = 4 R₂
using values from equation 1 and equation 2:
ρ₁L₁/πr₁² = 4ρ₂L₂/πr₂²
since, the material and length of both wires are same.
ρ₁ = ρ₂ = ρ
L₁ = L₂ = L
Therefore,
ρL/πr₁² = 4ρL/πr₂²
1/r₁² = 4/r₂²
r₁²/r₂² = 1/4
taking square root on both sides:
<u>r₁/r₂ = 1/2 = 0.5</u>
The period of the block's mass is changed by a factor of √2 when the mass of the block was doubled.
The time period T of the block with mass M attached to a spring of spring constant K is given by,
T = 2π(√M/K).
Let us say that, when we increased the mass to 2M, the time periods of the block became T', the spring constant is not changed, so, we can write,
T' = 2π(√2M/K)
Putting T = 2π(√M/K) above,
T' =√2T
So, here we can see, if the mass is doubled from it's initial value. The time period of the mass will be changed by a factor of √2.
To know more about time period of mass, visit,
brainly.com/question/20629494
#SPJ4
The two most important factors are Systematic Vascular Resistance as and Vascular Resistance.