Answer: 0.47 rad/sec
Explanation:
By definition, the angular velocity is the rate of change of the angle traveled with time, so we can state the following:
ω = ∆θ/ ∆t
Now, we are told that in 13.3 sec, the ball completes one revolution around the circle, which means that, by definition of angle, it has rotated 2 π rad (an arc of 2πr over the radius r), so we can find ω as follows:
ω = 2 π / 13.3 rad/sec = 0.47 rad/sec
Answer:
a= 0.22 m/s²
Explanation:
Given that
M = 3.5 kg
θ = 30°
m = 1 kg
μ= 0.3
The force due to gravity
F₁= M g sinθ
F₁=3.5 x 10 x sin 30
F₁= 17.5 N
F₂ = m g
F₂ = 1 x 10 = 10 N
The maximum value of the friction force on the incline plane
Fr = μ M g cosθ
Fr = 0.3 x 2.5 x 10 cos30°
Fr= 6.49 N
Lets take acceleration of the system is a m/s²
F₁ - F₂ - Fr = (M+m) a
17.5 - 10 - 6.49 = (3.5+1)a
a= 0.22 m/s²
Answer:
t = 0.657 s
Explanation:
given,
initial vertical velocity = 7.5 m/s
initial horizontal velocity = 0 m/s
angle = 49◦
using kinetic equation
final velocity in vertical direction
v sinθ = u_y - gt ........................(1)
final velocity in horizontal direction
v cosθ = u_x + a_x × t
here u_x = 0.0 m/s
v cosθ = a_x×t ......................(2)
Dividing equation (1) / (2)

solving for time t

u_y = initial velocity along x direction
acceleration along a_x = 1.4 m/s²
g = acceleration due to gravity = 9.8 m/s²
θ = 43° , u_y = 7.5 m/s

t = 0.657 s
time taken by the particle is t = 0.657 s