Explanation:
Below is an attachment containing the solution.
Wow ! This is not simple. At first, it looks like there's not enough information, because we don't know the mass of the cars. But I"m pretty sure it turns out that we don't need to know it.
At the top of the first hill, the car's potential energy is
PE = (mass) x (gravity) x (height) .
At the bottom, the car's kinetic energy is
KE = (1/2) (mass) (speed²) .
You said that the car's speed is 70 m/s at the bottom of the hill,
and you also said that 10% of the energy will be lost on the way
down. So now, here comes the big jump. Put a comment under
my answer if you don't see where I got this equation:
KE = 0.9 PE
(1/2) (mass) (70 m/s)² = (0.9) (mass) (gravity) (height)
Divide each side by (mass):
(0.5) (4900 m²/s²) = (0.9) (9.8 m/s²) (height)
(There goes the mass. As long as the whole thing is 90% efficient,
the solution will be the same for any number of cars, loaded with
any number of passengers.)
Divide each side by (0.9):
(0.5/0.9) (4900 m²/s²) = (9.8 m/s²) (height)
Divide each side by (9.8 m/s²):
Height = (5/9)(4900 m²/s²) / (9.8 m/s²)
= (5 x 4900 m²/s²) / (9 x 9.8 m/s²)
= (24,500 / 88.2) (m²/s²) / (m/s²)
= 277-7/9 meters
(about 911 feet)
Answer:
It's the 3rd option
Explanation:
Wind is caused by the differences in air pressure on Earth's surface.
Answer:
128 m
Explanation:
From the question given above, the following data were obtained:
Horizontal velocity (u) = 40 m/s
Height (h) = 50 m
Acceleration due to gravity (g) = 9.8 m/s²
Horizontal distance (s) =?
Next, we shall determine the time taken for the package to get to the ground.
This can be obtained as follow:
Height (h) = 50 m
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) =?
h = ½gt²
50 = ½ × 9.8 × t²
50 = 4.9 × t²
Divide both side by 4.9
t² = 50 / 4.9
t² = 10.2
Take the square root of both side
t = √10.2
t = 3.2 s
Finally, we shall determine where the package lands by calculating the horizontal distance travelled by the package after being dropped from the plane. This can be obtained as follow:
Horizontal velocity (u) = 40 m/s
Time (t) = 3.2 s
Horizontal distance (s) =?
s = ut
s = 40 × 3.2
s = 128 m
Therefore, the package will land at 128 m relative to the plane
Answer:
no change in speed, therefore the body cannot be accelerated. a=0
Explanation:
When a person is accelerating his speed must change, if the speed is in the same direction as the acceleration the speed increases and if the acceleration is in the opposite direction to the speed it decreases.
In this case there is no change in speed, therefore the body cannot be accelerated.