1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tems11 [23]
2 years ago
12

A merry-go-round of radius 2 m is rotating at one revolution every 5 s. A

Physics
1 answer:
galben [10]2 years ago
8 0

Answer:

a) The angular speed of the child is approximately 1.257 rad/s

b) The angular speed of the teenager is approximately 1.257 rad/s

c) The tangential speed of the child is approximately 1.257 m/s

d) For the child, r = 2 m

The tangential speed of the teenager is approximately 2.513 m/s

Explanation:

The revolutions per minute, r.p.m. of the merry-go-round = 1 revolution/(5 s)

The radius of the merry-go-round = 2 m

The location of the child = 1 m from the axis

The location of the teenager = 2 m from the axis

1 revolution = 2·π radians

Therefore, we have;

The angular speed, ω = (Angle turned)/(Time elapsed) = (2·π radians)/(5 s)

∴ The angular speed of the merry-go-round, ω = 2·π/5 radians/second

a) The angular speed of the child = The angular speed of the merry-go-round = 2·π/5 radians/second ≈ 1.257 rad/s

b) The angular speed of the teenager = The angular speed of the merry-go-round = 2·π/5 radians/second ≈ 1.257 rad/s

c) The tangential speed, v = r × The angular speed, ω

Where;

r = The radius of rotation of the object

For the child, r = 1 m

The tangential speed of the child = 1 m × 2·π/5 radians/second = 2·π/5 m/s ≈ 1.257 m/s

d) For the child, r = 2 m

The tangential speed of the teenager = 2 m × 2·π/5 radians/second = 4·π/5 m/s ≈ 2.513 m/s

You might be interested in
HELP PLS ILL GIVE U BRAINLIST
jeyben [28]

B. insulator

hope this was helpful

6 0
3 years ago
Read 2 more answers
A small bug is lying resting when nine ants simultaneously ambush it and begin pulling it in different directions. They are each
xxMikexx [17]

Answer: The bug will remain motionless

Explanation:

According to Newton's first Law of Motion (sometimes called Law of Inertia):

<em>An object at rest or describing a uniform straight line motion (moving at constant velocity), will remain at rest or moving unless an external force is applied to it and changes its state of rest or motion. </em>

In other words:

An object or body will keep its state of motion until an external force changes its state

This means that objects tend to remain in its state of motion, and is the definition of the inertia, as well.

In addition, according to his law, an object in rest can be in equilibrium (net force equals to zero), and a moving object can also be in equilibrium, as long as it keeps a constant velocity.

<h2>This is why the bug, which is at rest will remain at rest, although the ants are simultaneously pulling it in different directions, since the resultant of all these forces is zero.</h2>
4 0
3 years ago
One of the dangers of tornados and hurricanes is the rapid drop in air pressure that is associated with such storms. Assume that
Rufina [12.5K]

Answer:

45930.52N

Explanation:

Net force = (internal pressure - external pressure)× area of window

Net force = (1.02 - 0.910)atm × 2.03m × 2.03m = 0.11atm × 4.1209m^2 = 0.11 × 101325N/m^2 × 4.1209m^2 = 45930.52N

5 0
3 years ago
Ignoring air resistance and the little friction from the plastic tube, the magnet was a freely-falling object in each trial. If
horsena [70]

Answer:

emf will also be 10 times less as compared to when it has fallen 40 \mathrm{m}

Explanation:

We know, from faraday's law-

e m f=-N \frac{\Delta \Phi}{\Delta T}

and \Phi=B . A

So, as the height increases the velocity with which it will cross the ring will also increase. (v=\sqrt{2 g h})

Given

\mathrm{V} 1(\text { Speed at } 40 \mathrm{m})=2 \mathrm{x} \mathrm{V} 2(\text { speed at } 10 \mathrm{m})

\sqrt{2 g h_{2}}=2 \times \sqrt{2 g h_{1}}=28.28 \mathrm{m} / \mathrm{s}

Now, from 40 \mathrm{cm}

V_{3}=\sqrt{2 g h_{3}}=\sqrt{2 \times 10 \times 0.4}=2.82 \mathrm{m} / \mathrm{s}

From equation a and b we see that velocity when dropped from 40 \mathrm{m} is 10 times greater when height is 40 \mathrm{cm} so, emf will also be 10 times less as compared to when it has fallen 40 \mathrm{m}

4 0
3 years ago
What effects are jets and magnetic fields thought to have on a protostar?
alexgriva [62]

Answer:

the effects that a jet and the magnetic fields have on a ProStar Is :

Explanation:

over the years scientist have found out that magnetic fields and the Jets carry away angular momentum , which helps the ProStar grow more in size .

7 0
3 years ago
Other questions:
  • Relative velocity.....Please help....​
    6·1 answer
  • A skier has an acceleration of 2.5 m/s2. How long does it take her to come to a complete stop from a speed of 18 m/s? A. 3.4 s B
    12·1 answer
  • A tank is shaped like an upside-down square pyramid, with a base with sides that are 4 meters in length and a height of 12 meter
    7·1 answer
  • If we decrease the amount of force, and keep all other factors the same, what will happen to the amount of work? The amount of w
    15·1 answer
  • 4. Which of the following is equivalent to 800 cm?
    8·1 answer
  • An element located at the intersection of period 7 and group 2
    10·1 answer
  • Eric threw a baseball 20 meters in 0.5 seconds. What was the average speed of the baseball to the nearest hundredths of a m/sec.
    10·2 answers
  • A 30 kg child is sitting on a swing. Their weight is exerting a downward force on the swing. The ropes are exerting an upward fo
    5·2 answers
  • You accelerate from 2m/s to 6m/s while traveling a distance of 2m; what was your acceleration?
    10·1 answer
  • What happens to temperature of a substance during phase change
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!