The answer is Infrared. The infrared of the electromagnetic spectrum is most of earth's outgoing terrestrial radiation. <span>Earth is the hot body with temperature of 30 degrees on the average.</span>
Answer:
As the temperature of materials increase, the objects find a phenomenon called change of phase.
This means that if you give enough heat to a liquid, this can change of state from liquid state to gas state (the water evaporates)
So the water in the pan reaches the evaporation temperature (around 100°C) and it starts to evaporate, this is why the water on the outside begins to "dry"
The history of life in the geologic past as indicated by the imprints or remains of living thing is called FOSSIL RECORD.<span> It is the evolution that unfolded over trillion of years as natural and environmental interacts based on the natural selection. The fossil record is among the most popular evidences of evolution. It shows the way of living, the type of people, the survival struggles of the ancient people in the old times. All these types of remains are recorded that makes up the fossil record. </span>
Answer:
Red giant or super giant → very cool but very luminous
→ found in the upper right of the H-R diagram.
Main sequence →The majority of stars in our galaxy
→ Sun, for example
→ a very hot and very luminous star
White dwarfs → very hot but very dim
→ not much larger in radius than earth
Explanation:
Giant:
When the stars run out of their fuel that is hydrogen for the nuclear fusion reactions then they convert into Giant stars.That's why they are very cool. Giant stars have the larger radius and luminosity then the main sequence stars.
Main Sequence:
Stars are called main sequence stars when their core temperature reaches up to 10 million kelvin and their start the nuclear fusion reactions of hydrogen into helium in the core of the star. That is why they are very hot and luminous. For example sun is known as to be in the stage of main sequence as the nuclear fusion reactions are happening in its core.
White dwarfs:
When the stars run out of their fuel then they shed the outer layer planetary nebula, the remaining core part that left behind is called as white dwarf. It's the most dense part as the most of the mass is concentrated in this part.
Answer:
The distance between the two spheres is 914.41 X 10³ m
Explanation:
Given;
4 X 10¹³ electrons, and its equivalent in coulomb's is calculated as follows;
1 e = 1.602 X 10⁻¹⁹ C
4 X 10¹³ e = 4 X 10¹³ X 1.602 X 10⁻¹⁹ C = 6.408 X 10⁻⁶ C
V = Ed
where;
V is the electrical potential energy between two spheres, J
E is the electric field potential between the two spheres N/C
d is the distance between two charged bodies, m

where;
K is coulomb's constant = 8.99 X 10⁹ Nm²/C²
d = (8.99 X 10⁹ X 6.408 X 10⁻⁶)/0.063
d = 914.41 X 10³ m
Therefore, the distance between the two spheres is 914.41 X 10³ m