1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
k0ka [10]
3 years ago
13

What is density in physics

Physics
2 answers:
Lelu [443]3 years ago
6 0

Density is the amount of matter in a certain volume.

The formula for calculating density is:

density = mass/volume

Hope this helps (: <3

almond37 [142]3 years ago
3 0
Density is mass per volume
You might be interested in
A 4.87-kg ball of clay is thrown downward from a height of 3.21 m with a speed of 5.21 m/s onto a spring with k = 1570 N/m. The
Yuki888 [10]

Answer:

Approximately 0.560\; {\rm m}, assuming that:

  • the height of 3.21\; {\rm m} refers to the distance between the clay and the top of the uncompressed spring.
  • air resistance on the clay sphere is negligible,
  • the gravitational field strength is g = 9.81\; {\rm m\cdot s^{-2}}, and
  • the clay sphere did not deform.

Explanation:

Notations:

  • Let k denote the spring constant of the spring.
  • Let m denote the mass of the clay sphere.
  • Let v denote the initial speed of the spring.
  • Let g denote the gravitational field strength.
  • Let h denote the initial vertical distance between the clay and the top of the uncompressed spring.

Let x denote the maximum compression of the spring- the only unknown quantity in this question.

After being compressed by a displacement of x, the elastic potential energy \text{PE}_{\text{spring}} in this spring would be:

\displaystyle \text{PE}_{\text{spring}} = \frac{1}{2}\, k\, x^{2}.

The initial kinetic energy \text{KE} of the clay sphere was:

\displaystyle \text{KE} = \frac{1}{2}\, m \, v^{2}.

When the spring is at the maximum compression:

  • The clay sphere would be right on top of the spring.
  • The top of the spring would be below the original position (when the spring was uncompressed) by x.
  • The initial position of the clay sphere, however, is above the original position of the top of the spring by h = 3.21\; {\rm m}.

Thus, the initial position of the clay sphere (h = 3.21\; {\rm m} above the top of the uncompressed spring) would be above the max-compression position of the clay sphere by (h + x).

The gravitational potential energy involved would be:

\text{GPE} = m\, g\, (h + x).

No mechanical energy would be lost under the assumptions listed above. Thus:

\text{PE}_\text{spring} = \text{KE} + \text{GPE}.

\displaystyle \frac{1}{2}\, k\, x^{2} = \frac{1}{2}\, m\, v^{2} + m\, g\, (h + x).

Rearrange this equation to obtain a quadratic equation about the only unknown, x:

\displaystyle \frac{1}{2}\, k\, x^{2} - m\, g\, x - \left[\left(\frac{1}{2}\, m\, v^{2}\right)+ (m\, g\, h)\right] = 0.

Substitute in k = 1570\; {\rm N \cdot m^{-1}}, m = 4.87\; {\rm kg}, v = 5.21\; {\rm m\cdot s^{-1}}, g = 9.81\; {\rm m \cdot s^{-2}}, and h = 3.21\; {\rm m}. Let the unit of x be meters.

785\, x^{2} - 47.775\, x - 219.453 \approx 0 (Rounded. The unit of both sides of this equation is joules.)

Solve using the quadratic formula given that x \ge 0:

\begin{aligned}x &\approx \frac{-(-47.775) + \sqrt{(-47.775)^{2} - 4 \times 785 \times (-219.453)}}{2 \times 785} \\ &\approx 0.560\; {\rm m}\end{aligned}.

(The other root is negative and is thus invalid.)

Hence, the maximum compression of this spring would be approximately 0.560\; {\rm m}.

5 0
3 years ago
according to Newton's third law what is the equal and opposite force to the downward force of gravity pulling on a man standing
Fudgin [204]

When you're talking about gravity, it's easy to identify the equal
opposite forces.

Gravity ALWAYS produces an equal pair of opposite forces. 
They both act between the centers of the two objects, one in
each direction.

Consider the equal pair of opposite gravitational forces between
you and the Earth.  One force acts on you, and draws you toward
the center of the Earth.  We call that force "your weight". 
The other one acts on the Earth, and draws it toward the center
of you.  Hardly anybody ever talks about that one, but the two
forces are equal ... your weight on Earth is equal to the Earth's
weight on you !

7 0
3 years ago
Read 2 more answers
How did astronomers precisely determine the length of an Astronomical Unit in the 1960s?
zaharov [31]

Answer:

Use of telemetry and radar astronomy

Explanation:

An astronomical Unit (AU) is a unit of measuring distances in outer space, which is based on the approximate distance between the earth and the Sun.

After several years of trying to approximate the distance between the Sun and the Earth using several methods based on geometry and some other calculations, advancements in technology made available the presence of special motoring equipment, which can be placed in outer space to remotely monitor and measure the position of the sun.

The use of direct radar measurements to the sun (radar astronomy) have also made the determination of the AU more accurate.

A standard radar pulse of known speed is sent to the Sun, and the time with which it takes to return is measured,  once this is recorded, the distance between the Earth and the Sun can be calculated using

distance = speed X time.

However, most of these means have to be corrected for parallax errors

5 0
3 years ago
In the following atomic model, where does the strong nuclear force happen? mc006-1.jpg outside A between A and B between B and C
lukranit [14]
The answer is the third option
3 0
3 years ago
Which device converts electrical energy into kinetic energy?
andriy [413]
<h3><u>Answer;</u></h3>

<em>Electric motor</em>

<h3><u>Explanation;</u></h3>
  • <em><u>Energy</u></em> is the ability to do work. According to the law of conservation of energy,<em><u> energy can not be created nor destroyed but can be changed from one form to another</u></em>.
  • Changing energy from one form to another is done by devices we call <em><u>transducers. These are elements that convert energy from one form to another.</u></em>
  • In this case, electrical motor is an example of a transducer that converts electrical energy to kinetic energy. <em><u>Electrical energy is supplied to a the motor which converts it to rotational energy or mechanical energy then to kinetic energy.</u></em>
4 0
3 years ago
Read 2 more answers
Other questions:
  • A mouse runs along a baseboard in your house. The mouse's position as a function of time is given by x(t)=pt2+qt, with p = 0.36
    9·1 answer
  • One hundred turns of insulated copper wire are wrapped around an iron core of cross-sectional area 0.100m2. As the magnetic fiel
    15·1 answer
  • Which of the following is generally correct concerning the velocity and wavelength of waves in two different materials disturbed
    15·1 answer
  • To get better acceleration, you want to reduce the inertia of your bicycle. You have your choice of spending $45 on only one of
    13·1 answer
  • Which electromagnetic wave would have a wavelength approximately the size of the tip of a pencil?
    7·1 answer
  • A circuit has two 4Ω resistors in series with each other. What is the total resistance?
    11·1 answer
  • Which two statements are true?
    10·2 answers
  • A 6 cm object is 8 cm from a convex lens that has a focal length of 2.7 cm. The image is 4 cm from the lens.
    6·2 answers
  • 1. Calculate the height of tree, 250 m away that produces
    8·1 answer
  • Leverrier predicted that an invisible planet was pulling the planet Uranus off its predicted course around the sun. Likewise, hu
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!