Answer:
The first part of the question is asking about BUOYANT FORCE or UPTHRUST.
Upthrust =TRUE WEIGHT-APPARENT WEIGHT
TRUE WEIGHT=mg
TRUE weight=50kg×10m/s²
=500N
upthrust=500N-380N
FB=120N
volume of the rock=mass/density.
since the granite is completely submerged, the volume of the displaced liquid will be equal to the volume of the body.
upthrust=Vdg
120N=V×1000kg/m³×10m/s²
120N=V×10000kg/m²s²
120/10000=V
v=0.012m³
please mark brainliest, hope it helped
Explanation:
It is given that, Onur drops a basketball from a height of 10 m on Mars, where the acceleration due to gravity has a magnitude of 3.7 m/s².
The second equation of kinematics gives the relationship between the height reached and time taken by it.
Here, the ball is droped under the action of gravity. The value of acceleration due to gravity on Mars is positive.
We want to know how many seconds the basketball is in the air before it hits the ground. So, the formula is :

t is time taken by the ball to hit the ground
is initial speed of the ball
So, the correct option is (A).
To calculate the mass of the fuel, we use the formula

Here, m is the mass of fuel, V is the volume of the fuel and its value is
and
is the density and its value of 0.821 g/mL.
Substituting these values in above relation, we get
Thus, the mass of the fuel 247 .94 kg.
Option (ii) B is the correct option. The object on the moon has greater mass.
To resolve this, utilize the formulas Force = Mass * Acceleration.
The equation can be used to find the mass given the force in Newtons, using 9.8 m/s² for the acceleration of gravity of the earth and 1.6 m/s² for the moon.
Calculating the mass on earth:
30 N = 9.8 m/s² * mass
This results in a mass of 3.0 kg for the object on Earth.
Calculating the mass of the moon:
30 N = 1.6 m/s²2 * mass
Thus, the moon's object has a mass of 19. kg.
This can be explained by the fact that the earth has a stronger gravitational pull than the moon, producing more force per kilogram of mass. As a result, the moon's mass must be bigger to produce the same amount of force at a lower acceleration from gravity (1.6 m/s² vs. 9.8 m/s²).
To know more about Mass, refer to this link :
brainly.com/question/13386792
#SPJ9