Answer:
3 hours
Explanation:
180 divided by 60 (mph means miles per hours by the way)
It has to do with we're the water is coming from and we're it's at like city or town
Answer: a) 8.2 * 10^-8 N or 82 nN and b) is repulsive
Explanation: To solve this problem we have to use the Coulomb force for two point charged, it is given by:

Replacing the dat we obtain F=82 nN.
The force is repulsive because the points charged have the same sign.
Answer:
She can swing 1.0 m high.
Explanation:
Hi there!
The mechanical energy of Jane (ME) can be calculated by adding her gravitational potential (PE) plus her kinetic energy (KE).
The kinetic energy is calculated as follows:
KE = 1/2 · m · v²
And the potential energy:
PE = m · g · h
Where:
m = mass of Jane.
v = velocity.
g = acceleration due to gravity (9.8 m/s²).
h = height.
Then:
ME = KE + PE
Initially, Jane is running on the surface on which we assume that the gravitational potential energy of Jane is zero (the height is zero). Then:
ME = KE + PE (PE = 0)
ME = KE
ME = 1/2 · m · (4.5 m/s)²
ME = m · 10.125 m²/s²
When Jane reaches the maximum height, its velocity is zero (all the kinetic energy was converted into potential energy). Then, the mechanical energy will be:
ME = KE + PE (KE = 0)
ME = PE
ME = m · 9.8 m/s² · h
Then, equallizing both expressions of ME and solving for h:
m · 10.125 m²/s² = m · 9.8 m/s² · h
10.125 m²/s² / 9.8 m/s² = h
h = 1.0 m
She can swing 1.0 m high (if we neglect dissipative forces such as air resistance).
Answer:
Below
Explanation:
You can use this equation to find the distance :
distance = velocity x time
distance = (26.7)(3.06)
= 81.702 m
Rounding to 3 sig figs
= 81.7 m
Hope this helps