Answer:
16 °C
Explanation:
Step 1: Given data
- Provided heat (Q): 811.68 J
- Mass of the metal (m): 95 g
- Specific heat capacity of the metal (c): 0.534 J/g.°C
Step 2: Calculate the temperature change (ΔT) experienced by the metal
We will use the following expression.
Q = c × m × ΔT
ΔT = Q/c × m
ΔT = 811.68 J/(0.534 J/g.°C) × 95 g = 16 °C
Answer:
The molarity is 2M
Explanation:
First , we calculate the weight of 1 mol of NaCl:
Weight 1mol NaCl= Weight Na + Weight Cl= 23 g+ 35, 5 g= 58, 5 g/mol
58,5 g---1 mol NaCl
233,772 g--------x= (233,772 g x1 mol NaCl)/58,5 g= 4 mol NaCl
<em>A solution molar--> moles of solute in 1 L of solution:</em>
2 L-----4 mol NaCl
1L----x0( 1L x4mol NaCl)/4L =2moles NaCl---> 2 M
Given :
Number of molecules of hydrogen peroxide, N = 4.5 × 10²².
To Find :
The mass of given molecules of hydrogen peroxide.
Solution :
We know, 1 mole of every compound contains Nₐ = 6.022 × 10²³ molecules.
So, number of moles of hydrogen peroxide is :

Now, mass of hydrogen peroxide is given as :
m = n × M.M
m = 0.0747 × 34 grams
m = 2.54 grams
Hence, this is the required solution.
B. When electrons gain energy, they have the power to move up to a higher energy level in an atom.