2.6x10negative4power
2.6x10^-4
Explanation:
1. Explain how groups 1A-8A in the periodic table are organized by their number of valence electrons.
The valence electrons in an atom are the outermost shell electrons. They are the most loosely held electrons in an atom.
Coincidentally, the periodic table of elements divided into vertical groups and horizontal periods can be said to be arranged according to the number of valence electrons.
- Atomic numbers are used to arrange elements on the periodic table.
- Down a group, the number of electronic shell increases. More electrons are added to new energy levels.
- As we move from left to right across a period, the number of electrons in elements increases but electronic shell is the same.
- Down a group electronic shell increases but the number of valence electrons are the same.
- All elements in Group 1A has just one valence electrons, Group 2A has two valence electrons.........Group 8A has eight valence electrons.
- Moving across groups is synonymous to moving from left to right on the periodic table.
- Due to this trend, the periodic table is arranged based on the number of valence electrons.
3. explain how you know the number of valence electrons for each group.
The number of valence electrons in a group is the group number:
Group Number valence electrons
1A 1
2A 2
3A 3
4A 4
5A 5
6A 6
7A 7
8A 8
learn more:
Periodic table brainly.com/question/1971327
#learnwithBrainly
Answer:
The answer to your question is pH = 2.2
Explanation:
Data
pH = ?
moles of HCl = 0.927
volume = 150 l
Process
1.- Calculate the Molar concentration of HCl
Molarity = moles / volume (L)
Molarity = 0.927 / 150
= 0.00618
2.- Calculate the pH
pH = -log [HCl]
Substitution
pH = -log [0.00618]
Result
pH = 2.2
The correct answer to
the question that is stated above is letter c, <span> the outer electron shell.</span>
Valence electrons occur<span> in the outermost shells of an </span>atom.
>> <span>Valence electrons are </span>electrons<span> that are associated with an </span>atom<span>, and that can participate in the formation of a </span>chemical bond.