Answer:
5.52atm
Explanation:
Using the pressure law formula:
P1/T1 = P2/T2
Where;
P1 = initial pressure (atm)
P2 = final pressure (atm)
T1 = initial temperature (K)
T2 = final temperature (K)
According to the question, the following information were provided;
P1 = 4.72 atm
P2 = ?
T1 = -3.50°C = -3.50 + 273 = 269.5K
T2 = 42°C = 42 + 273 = 315K
Using P1/T1 = P2/T2
4.72/269.5 = P2/315
CROSS MULTIPLY
4.72 × 315 = 269.5 × P2
1,486.8 = 269.5P2
P2 = 1,486.8 ÷ 269.5
P2 = 5.52atm
it would need to gain 2 more for it to achieve a stable configuration
the best way to remember this is the noble gasses all have 8 valence electrons and that they are the most stable elements on the periodic table
The empirical formula represents the simplest whole number shows the simplest whole number ratio of atoms in a compound. An example of this is the empirical formula for glucose (C₆H₁₂O₆) is C₃H₆O₃.
I hope this helps. Let me know if anything is unclear.
Answer:
A. Digests food
Explanation:
Look about diggestive process in Google
Best regards
Answer:
3.62x10⁻⁷ = Kb
Explanation:
The acid equilibrium of a weak acid, HX, is:
HX + H₂O ⇄ X⁻ + H₃O⁺
Where Ka = [X⁻] [H₃O⁺] / [HX]
And basic equilibrium of the conjugate base, is:
X⁻ + H₂O ⇄ OH⁻ + HX
Where Kb = [OH⁻] [HX] / [X⁻]
To convert Ka to Kb we must use water equilibrium:
2H₂O ⇄ H₃O⁺ + OH⁻
Where Kw = 1x10⁻¹⁴ = [OH⁻] [H₃O⁺]
Thus, we can obtain:
Kw = Ka*Kb
Solving for Kb:
Kw / Ka = Kb
1x10⁻¹⁴ / 2.76x10⁻⁸ =
3.62x10⁻⁷ = Kb