Answer:
0.084 M
Explanation:
Using the Henderson-Hasselbalch equation for a buffer ( a buffer is solution contain a weak acid and it conjugate base; the solution resist change in pH)
pH = pKa + log ( base/acid)
4.9 - 4.76 =log ( base / acid)
10^0.14 = ( base / acid)
1.38 = (base / acid)
since there is 0.2 M in the buffer solution
the concentration of acid =
× 0.2 = 0.084 M
Answer:
The charge of the purple circles should be positive because they represent the nuclei.
Explanation:
Answer:
0.00230 = <u>3 significant figures</u>
Explanation:
Significant digits or figures of a given number are the digits or figures that have meaning and contributes to the precision of the given number.
Therefore, <u>0.00230 = 3 significant figures.</u>
Reason: The non-zeros figures and the trailing zero after the decimal are significant. Whereas, all the leading zeros are not considered significant.
I thinking the limitation is that a shifting electron will always move from a more excited states to a less excited state. Electrons could not circle the nucleus because they would lose energy by emitting electromagnetic radiation and spiral into the nucleus. In addition Bohr was not able to explain electrons orbits of large atom w/many electrons.
The mass of carbon dioxide that would be made by reacting 30 grams C2H6 with 320 grams O2 will be 80 grams
From the balanced equation of the reaction:

The mole ratio of C2H6 to O2 is 2:7.
- Mole of 30 grams C2H6 = mass/molar mass
= 30/30
= 1 mole
- Mole of 320 grams O2 = 320/32
= 10 moles
Thus, C2H6 is the limiting reactant.
Mole ratio of C2H6 to CO2 according to the equation = 1:2
Since the mole of C2H6 is 1, the equivalent mole of CO2 would, therefore, be 2.
Mass of 2 moles CO2 = mole x molar mass
= 2 x 44
= 88 grams
More on stoichiometric calculations can be found here: brainly.com/question/8062886?referrer=searchResults