Answer:
Explanation:
I'm not sure you can do this without just a bit more information. I can tell you what the mass of the water is when the rocks are removed. When we know that, we know the volume of the water that was displaced. whether or not this is enough information to determine the volume of the box, I'm not sure.
400 grams raises the box 1 cm.
The density of water = 1 gm / cm^3
400 grams of water = 400 mL or 400 cm^3
The volume of the displaced water = 400 cm^3
The volume a slice from the square prism is B*h
B = 400 cm^2
h = 1 cm
If the base is 400 cm^2 then each side is
s^2 = 400
sqrt(s^2)= sqrt(400)
s = 20
The volume of the box is 20^3 = 8000 cm^3
Answer:
0.03 A
Explanation:
From the question given above, the following data were obtained:
Voltage (V) = 12 V
Resistor (R) = 470 Ω
Current (I) =?
From ohm's law, the voltage, current and resistor are related by the following formula:
Voltage = current × resistor
V = IR
With the above formula, we can obtain the current in the circuit as follow:
Voltage (V) = 12 V
Resistor (R) = 470 Ω
Current (I) =?
V = IR
12 = I × 470
Divide both side by 470
I = 12 / 470
I = 0.03 A
Thus, the current in the circuit is 0.03 A
magnetic field due to a finite straight conductor is given by

here since it forms an equilateral triangle so we will have

also the perpendicular distance of the point from the wire is

now from the above equation magnetic field due to one wire is given by



now since in equilateral triangle there are three such wires so net magnetic field will be

<h2>Answer: Resonance
</h2>
Resonance is a phenomenon that occurs when a body capable of vibrating is subjected to the action of a periodic force, whose frequency of vibration approaches the characteristic frequency of vibration (called resonance frequence) of said body. This is due a relatively small force applied in a repeated form, causing the amplitude of the oscillating system to become very large.
In other words, for the specific case of sound waves, this phenomenon occurs when the frequency of the wave that is external to the system or body coincides with the resonance frequency (characteristic frequency that reaches the maximum degree of oscillation) of this system or body.
In these circumstances the body vibrates, progressively increasing the amplitude of movement after each successive actions of the force. However, this effect can be destructive in some rigid materials.
The matter from the explosion can reach him, hitting him. He should be able to feel that.