Answer:
The density of acetic acid at 30°C = 1.0354_g/mL
Explanation:
specific gravity of acetic acid = (Density of acetic acid at 30°C) ÷ (Density of water at 30°C)
Therefore, the density of acetic acid at 30°C = (Density of water at 30°C) × (Specific gravity of acetic acid at 30°C)
= 0.9956 g/mL × 1.040
= 1.0354_g/mL
Specific gravity, which is also known as relative density, is the ratio of the density of a substance to the density of a specified standard substance.
Generally the standard substance of to which other solid and liquid substances are compared is water which has a density of 1.0 kg per litre or 62.4 pounds/cubic foot at 4 °C (39.2 °F) while gases are normally compared with dry air, with a density of 1.29 grams/litre or 1.29 ounces/cubic foot under standard conditions of a temperature of 0 °C and one standard atmospheric pressure
Answer:
<em>ii</em><em> </em><em>and</em><em> </em><em>iv</em><em> </em>
Explanation:
atomic mass is the sum of protons and neutrons
protons ( postively charged) usually have the same number like electrons( negatively charged)
410g Ag
2.3*10^24 atoms
1 molcule Ag- 6.02g*10^3
The molar mass of monotonic Nitrogen is 14 g/mol. Since this is diatomic Nitrogen, double that to 28 g/mol.
Next, divide total mass by molar mass, 500 g / 28 g/mol, which gives <span>17.8571 moles. A mole is defined as being 6.022*10^23 molecules, so multiply moles by molecules/mol (Avogadro's number), and we finally end up with something like 1.075 * 10^25, give or take a few billion particles.</span>