The minimum speed of the particle is the Speed of light in glass is c/μ=2×108m/s.
<h3>Why is the refractive index important?</h3>
The higher the refractive index the slower the light travels, which causes a correspondingly increased change in the direction of the light within the material. What this means for lenses is that a higher refractive index material can bend the light more and allow the profile of the lens to be lower.
Refractive index values are usually determined at standard temperature. A higher temperature means the liquid becomes less dense and less viscous, causing light to travel faster in the medium.
To learn more about the refractive index visit the link
brainly.com/question/23750645
#SPJ4
Answer:
- Particles smaller than atoms are called subatomic particles .
- There are three famous subatomic particles, proton, neutron and electron .
- The study of sub atomic particles are called particle physics
- These particles can be divided as Brayons and Leptons
- These particles are often held together by one of the four fundamental particles ( Weak force, strong force, electromagnetic force, gravitational force).
Answer:
The speed of the large cart after collision is 0.301 m/s.
Explanation:
Given that,
Mass of the cart,
Initial speed of the cart,
Mass of the larger cart,
Initial speed of the larger cart,
After the collision,
Final speed of the smaller cart, (as its recolis)
To find,
The speed of the large cart after collision.
Solution,
Let is the speed of the large cart after collision. It can be calculated using conservation of momentum as :
So, the speed of the large cart after collision is 0.301 m/s.
Answer:
375 m.
Explanation:
From the question,
Work done by the frictional force = Kinetic energy of the object
F×d = 1/2m(v²-u²)..................... Equation 1
Where F = Force of friction, d = distance it slide before coming to rest, m = mass of the object, u = initial speed of the object, v = final speed of the object.
Make d the subject of the equation.
d = 1/2m(v²-u²)/F.................. Equation 2
Given: m = 60.0 kg, v = 0 m/s(coming to rest), u = 25 m/s, F = -50 N.
Note: If is negative because it tends to oppose the motion of the object.
Substitute into equation 2
d = 1/2(60)(0²-25²)/-50
d = 30(-625)/-50
d = -18750/-50
d = 375 m.
Hence the it will slide before coming to rest = 375 m