Using the Michaelis-Menten equation competitive inhibition, the Inhibition constant, Ki of the inhibitor is 53.4 μM.
<h3>What is the Ki for the inhibitor?</h3>
The Ki of an inhibitor is known as the inhibition constant.
The inhibition is a competitive inhibition as the Vmax is unchanged but Km changes.
Using the Michaelis-Menten equation for inhibition:
Making Ki subject of the formula:
where:
- Kma is the apparent Km due to inhibitor
- Km is the Km of the enzyme-catalyzed reaction
- [I] is the concentration of the inhibitor
Solving for Ki:
where
[I] = 26.7 μM
Km = 1.0
Kma = (150% × 1 ) + 1 = 2.5
Ki = 26.7 μM/{(2.5/1) - 1)
Ki = 53.4 μM
Therefore, the Inhibition constant, Ki of the inhibitor is 53.4 μM.
Learn more about enzyme inhibition at: brainly.com/question/13618533
A condensation reaction forming a glycosidic bond. so in other words a monosaccharide joining together to form a disaccharide.
Answer: Be= 2, C =4, Li = 1 and B=3
Explanation:
The valence shell can be define as the outermost shell of an atom that contains the valence electrons.
Beryllium (Be), electronic configuration; 1s2 2s2, = 2 electrons in its valence shell.
Carbon (C), electronic configuration; 1s2 2s2 2p2, = 4 electrons in its valence shell.
Lithium (Li), electronic configuration; 1s2 2s1 = 1 electron in its valence shell.
Boron (B) , electronic configuration; 1s2 2s2 2p1 = 3 electron in its valence shell.
Answer:
See explanation
Explanation:
In this case, we have to remember that if we want to remove water from the reaction vessel we have to heat the vessel. So, we can convert the liquid water into <u>gas water</u> and we can remove it from the vessel. In this case, the products of dehydration for both molecules are <u>(E)-4-methylpent-2-ene</u> and <u>cyclohexene</u> with boiling points of <u>59.2 ºC</u> and <u>89 ºC</u> respectively. The boiling point of water is <u>100 ºC</u>, therefore if we heat the vessel the products and water would leave the system, and the products would be lost.
See figure 1
I hope it helps!
The formula for energy or enthalpy is:
E = m Cp (T2 – T1)
where E is energy = 63 J, m is mass = 8 g, Cp is the
specific heat, T is temperature
63 J = 8 g * Cp * (340 K – 314 K)
<span>Cp = 0.3 J / g K</span>