Answer- 33.4 kJ
Explanation-
100 g H2O x (1mol/18g) = 5.5 mol
q=(5.5 mol)(6.01 KJ/mol)= 33.4 kJ
Answer:
The molarity of 2.0 liters of an aqueous solution that contains 0.50 mol of potassium iodide is 0.25M.HOW TO CALCULATE MOLARITY:The molarity of a solution can be calculated by dividing the number of moles by its volume. That is;Molarity = no. of moles ÷ volumeAccording to this question, 2.0 liters of an aqueous solution that contains 0.50 mol of potassium iodide. The molarity is calculated as follows:Molarity = 0.50mol ÷ 2LMolarity = 0.25MTherefore, the molarity of 2.0 liters of an aqueous solution that contains 0.50 mol of potassium iodide is 0.25M.Learn more about molarity at: brainly.com/question/2817451
Explanation:
Mark me brainliest please!!! I spent a lot of time on this!!
Draw the electron-dot (Lewis) structure of O2. You will see that there is a double bond, thus making the chemical bond a covalent bond since they have to share a pair of electrons in order to complete their octet.
Answer:
Chemical reactivity increases down a group and decreases from left to right of a period.
Explanation:
The higher the ionization energy is, the lower the reactivity is. Since the ionization energy is highest in the top right corner of the periodic table, we can assume that the most reactive elements are in the opposite bottom left corner. This is because the electrons that react are farther away from the nucleus thus experience less attraction to the nucleus (called nuclear shielding). Therefore their electrons are more easily removed than elements that don't ecperience nuclear shielding.