Answer: -93.5
Step-by-step explanation:
Average of the two -94+-93/2= -93.5 so thats the midpoint
<em>z</em> = 3<em>i</em> / (-1 - <em>i</em> )
<em>z</em> = 3<em>i</em> / (-1 - <em>i</em> ) × (-1 + <em>i</em> ) / (-1 + <em>i</em> )
<em>z</em> = (3<em>i</em> × (-1 + <em>i</em> )) / ((-1)² - <em>i</em> ²)
<em>z</em> = (-3<em>i</em> + 3<em>i</em> ²) / ((-1)² - <em>i</em> ²)
<em>z</em> = (-3 - 3<em>i </em>) / (1 - (-1))
<em>z</em> = (-3 - 3<em>i </em>) / 2
Note that this number lies in the third quadrant of the complex plane, where both Re(<em>z</em>) and Im(<em>z</em>) are negative. But arctan only returns angles between -<em>π</em>/2 and <em>π</em>/2. So we have
arg(<em>z</em>) = arctan((-3/2)/(-3/2)) - <em>π</em>
arg(<em>z</em>) = arctan(1) - <em>π</em>
arg(<em>z</em>) = <em>π</em>/4 - <em>π</em>
arg(<em>z</em>) = -3<em>π</em>/4
where I'm taking arg(<em>z</em>) to have a range of -<em>π</em> < arg(<em>z</em>) ≤ <em>π</em>.
For the given triangle, the tan of angle A equals 
Step-by-step explanation:
Step 1:
In the given triangle for angle A, the opposite side has a length of 6 cm, the adjacent side has a length of 8 cm while the hypotenuse of the triangle measures 10 cm. To calculate the tan of angle A we divide the opposite side's length by the adjacent side's length.

Step 2:
The opposite side's length = 6 cm.
The adjacent side's length = 8 cm.

14 times 0.999 blank 14
probably it is a relation symbol
=
>
<
<u>>
<</u>
so we know that x times 1=x
therefor
x times (less than 1)<x
0.999 is less than 1
0.999<1
therefor
14 times 0.999<14
blank is <