Answer:
3
Explanation:
Order of in the mass action law is the coefficient which is raised to the active concentration of the reactants. It is experimentally determined and can be zero, positive negative or fractional.
The order of the whole reaction is the sum of the order of each reactant which is raised to its power in the rate law.
Thus,
For the reaction:-
2Mg+O₂→2MgO
Rate = k[Mg][O₂]²
Order w.r.t. Mg = 1
Order w.r.t. O₂ = 2
<u>So, order of the overall reaction = 1 + 2 = 3</u>
Answer:
The masses of the reactants and products are equal.
Explanation:
Hope this helps.
Lead (II) acetate trihydrate is the systematic name for the formula Pb(C₂H₃O₂)₂ . 3H₂O.
<h3>What is Molecular Formula ?</h3>
The chemical formula that gives total number of atoms of each element in one molecule of a compound is called Molecular Formula.
<h3>What is Oxidation State ?</h3>
Oxidation state is also known as oxidation number. It is defined as the atom is equal to the total number of electrons which have been removed from the element in order to form chemical bond with other atom.
Now find the oxidation state of Pb in Pb(C₂H₃O₂)₂ .3H₂O
Assume the oxidation state of Pb in Pb(C₂H₃O₂)₂ .3H₂O be x
x + 2 × (-1) + 3 × 0 = 0
x - 2 + 0 = 0
x = 2
Oxidation state of Pb is +2 or (II)
Thus from the above conclusion we can say that The systematic name for the formula Pb(C₂H₃O₂)₂ .3H₂O is Lead (II) acetate trihydrate.
Learn more about the Molecular Formula here: brainly.com/question/15960587
#SPJ4
The Law of Conservation of Mass states that matter can neither be created nor destroyed in a chemical reaction.
Answer : The mass of sulfuric acid needed is
.
Solution : Given,
pH = 8.94
Volume of solution = 380 ml =

Molar mass of sulfuric acid = 98.079 g/mole
As we know,

![pOH=-log[OH^-]](https://tex.z-dn.net/?f=pOH%3D-log%5BOH%5E-%5D)
![5.06=-log[OH^-]](https://tex.z-dn.net/?f=5.06%3D-log%5BOH%5E-%5D)
![[OH^-]=0.00000871=8.71\times 10^{-6}mole/L](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D0.00000871%3D8.71%5Ctimes%2010%5E%7B-6%7Dmole%2FL)
Now we have to calculate the moles of
.
Formula used : 
![\text{ Moles of }[OH^-]=\text{ Concentration of }[OH^-]\times Volume\\\text{ Moles of }[OH^-]=(8.71\times 10^{-6}mole/L)\times (380\times 10^{-3}L)=3309.8\times 10^{-9}moles](https://tex.z-dn.net/?f=%5Ctext%7B%20Moles%20of%20%7D%5BOH%5E-%5D%3D%5Ctext%7B%20Concentration%20of%20%7D%5BOH%5E-%5D%5Ctimes%20Volume%5C%5C%5Ctext%7B%20Moles%20of%20%7D%5BOH%5E-%5D%3D%288.71%5Ctimes%2010%5E%7B-6%7Dmole%2FL%29%5Ctimes%20%28380%5Ctimes%2010%5E%7B-3%7DL%29%3D3309.8%5Ctimes%2010%5E%7B-9%7Dmoles)
For neutralization, equal number of moles of
ions will neutralize same number of
ions.
![\text{ Moles of }[OH^-]=\text{ Moles of }[H^+]=3309.8\times 10^{-9}moles](https://tex.z-dn.net/?f=%5Ctext%7B%20Moles%20of%20%7D%5BOH%5E-%5D%3D%5Ctext%7B%20Moles%20of%20%7D%5BH%5E%2B%5D%3D3309.8%5Ctimes%2010%5E%7B-9%7Dmoles)
As, 
From this reaction, we conclude that
2 moles of
ion is given by the 1 mole of 
moles of
ion is given by
moles of 
Now we have to calculate the mass of sulfuric acid.
Mass of sulfuric acid = Moles of
× Molar mass of sulfuric acid
Mass of sulfuric acid = 
Therefore, the mass of sulfuric acid needed is
.