Answer:
<h2>
work done= 48.96 kJ</h2>
Explanation:
Given data
mass of load m= 425 kg
height/distance h=64 m
acceleration a= 1.8 m/s^2
The work done can be calculated using the expression
work done= force* distance
but force= mass *acceleration
hence work done= 425*1.8*64= 48,960 J
work done= 48.96 kJ
The momentum of the mass expelled in the opposite direction ... the rocket-engine exhaust, or the ionized matter expelled from an ion drive.
THAT's why every propulsion engine has outlet nozzles designed with super-high-intensity math, to achieve the highest possible velocity for the mass that gets shot out the back ... so that it will carry the maximum possible momentum.
Answer:
a. one line down one line to the right one live to the northwest from the object
b. t1=190 t2=310
Explanation:
C. Both A. and B.
Explanation:
Statement A. Reducing the volume is true because of Boyle's law, which states that for a gas at fixed temperature, the pressure p and the volume V are inversely proportional:

Therefore, when the volume V is reduced, the pressure p increases.
Statement B. Adding more gas is also true: in fact, if we add gas into the container, we will have more molecules of the gas hitting the wall of the container. But the pressure of a gas is exactly given by this: by the collision of the molecules against the wall of the container, so the more the molecules of gas, the greater the pressure.