Answer: VENUS
Explanation:
Venus tiene una lenta rotación retrógrada, lo que significa que gira de este a oeste, en lugar de hacerlo de oeste a este como lo hacen la mayoría de los demás planetas mayores (Urano también tiene una rotación retrógrada, aunque el eje de rotación de Urano, inclinado 97.86°, prácticamente descansa sobre el plano.
Answer:
I = I₀ + M(L/2)²
Explanation:
Given that the moment of inertia of a thin uniform rod of mass M and length L about an Axis perpendicular to the rod through its Centre is I₀.
The parallel axis theorem for moment of inertia states that the moment of inertia of a body about an axis passing through the centre of mass is equal to the sum of the moment of inertia of the body about an axis passing through the centre of mass and the product of mass and the square of the distance between the two axes.
The moment of inertia of the body about an axis passing through the centre of mass is given to be I₀
The distance between the two axes is L/2 (total length of the rod divided by 2
From the parallel axis theorem we have
I = I₀ + M(L/2)²
Answer:
she's wrong because she is and there it doesn't say she's right
When you talk about Hooke's law, it always have to do something with springs. Hooke's Law, from Robert Hooke, saw a relation between the force applied to the spring and the extension of its length. The equation is: F = kx, where k is the spring constant and x is the displacement of the original and stretched lengths. In other words, x is the length of deformation. Hence, the object must be elastic to come up with a displacement or deformation, in the first place. Then, the Hooke's Law is only applicable to elastic materials.
The free fall of the phone is an uniformly accelerated motion toward the ground, with constant acceleration equal to

So, assuming the downward direction as positive direction of the motion, since the phone starts from rest the distance covered by the phone after a time t is given by

And if we substitute t=2.7 s, we find the distance covered: