Answer : The partial pressure of
is, 222.93 torr
Explanation :
Half-life = 2.81 hr = 168.6 min
First we have to calculate the rate constant, we use the formula :



Now we have to calculate the partial pressure of 
The balanced chemical reaction is:

Initial pressure 760 0 0
At eqm. (760-2x) 4x x
Expression for rate law for first order kinetics is given by:

where,
k = rate constant
t = time passed by the sample = 215 min
a = initial pressure of
= 760 torr
a - x = pressure of
at equilibrium = (760-2x) torr
Now put all the given values in above equation, we get:


The partial pressure of
= x = 222.93 torr
Explanation:
divide the objects weight by the acceleration of gravity to find the mass
Answer:
5.67 g OF WATER WILL BE FORMED WHEN 13.7 g OF MnO2 REACTS WITH HCl GAS.
Explanation:
EQUATION FOR THE REACTION
Mn02 + 4HCl --------> MnCl2 + Cl2 + 2H2O
From the balanced reaction between manganese oxide and hydrogen chloride gas;
1 mole of MnO2 reacts to form 2 mole of water
At STP, the molecular mass of the sample is equal to the mole of the substance. So therefore:
(55 + 16 * 2) g of MnO2 reacts to form 2 * ( 1 *2 + 16) g of water
(55 + 32) g of MnO2 reacts to form 2 * 18 g of water
87 g of MnO2 reacts to form 36 g of water
If 13.7 g of MnO2 were to be used?
87 g of MnO2 = 36 g of H2O
13.7 g of MnO2 = ( 13.7 * 36 / 87) g of water
= 493.2 / 87 g of water
Mass of water = 5.669 g of water
Approximately 5.67 g of water will be formed when 13.7 g of manganese oxide reacts with excess hydrogen chloride gas.
A diet rich in vegetables and fruits can lower blood pressure such as eating healthy