Answer:
X = 4
Explanation:
Start 2800
End 175
175 = 2800x(0.5)^X
175/2800 = 0.5^X
0.0625 = 0.5^X
log(0.5 x) = log(0.0625)
x · log(0.5) = log(0.0625)
-0.301x = -1.204
x = -1.204/-0.301
x = 4
Answer:
I^- or Cl^-
Explanation:
A nucleophile is any reagent that donates an unshared pair of electrons to form a new covalent bond. Nucleophiles are mostly bases also. Nucleophilicity is a kinetic property, it refers to the rate at which a nucleophile replaces a leaving group from an alkyl halide.
Looking at the options, Cl^- and I^- are the best nucleophiles among the options provided in the question.
2SO2(g)+O2(g)→2 SO3(g), here reaction entropy decreases as the number of gas moles decreases from reactions to products.
HCL(g)+NH3(g)→NH4CL(s), entropy decreases as molecules of gas are converted into solid.
CO2(s)→CO2(g), entropy increases as gas is formed from a solid.
Cao(s)+CO2(g)→Caco3(s), entropy increases as gas is converted into a solid.
Answer :
The Nernst equation :
![E_{cell}=E^o_{cell}-\frac{2.303RT}{nF}\log \frac{[Anode]}{[Cathode]}](https://tex.z-dn.net/?f=E_%7Bcell%7D%3DE%5Eo_%7Bcell%7D-%5Cfrac%7B2.303RT%7D%7BnF%7D%5Clog%20%5Cfrac%7B%5BAnode%5D%7D%7B%5BCathode%5D%7D)
where,
= standard cell potential
n = number of electrons in oxidation-reduction reaction
F = Faraday constant = 96500 C
R= gas constant = 8.314 J/Kmol
T = temperature
[Anode] = anodic ion concentration
[Cathode] = cathodic ion concentration
Answer:
N₂+3H₂ ⇄2NH₃ is a thermochemical reaction whereas A+BC⇄AB is not.
A+BC⇄AB is a reaction of pure a element with a compound while N₂+3H₂ ⇄2NH₃ is a reaction between two pure elements.
Explanation:
Let A+BC⇄AB be equation i and N₂+3H₂ ⇄2NH₃ be equation ii.
The two reactions differ in that ii is a thermo-chemical reaction whereas i is not. This is because energy is included in reaction ii but not included in reaction i.
Also i is a reaction of pure a element with a compound while ii is a reaction between two pure elements. The compound is BC while the pure element is A.