Answer:
Wheel A.
Explanation:
The lesser the moment of inertia, the greater the angular acceleration. Then, the moments of inertia of each wheel are described below:
Wheel A

Wheel B


The wheel A accelerates faster in response to the torque.
Answer:
c.
Explanation:
We are given that
Acceleration due to gravity on the moon=
Acceleration due to gravity on the earth=

Net force due to am on an object on moon=
There is no friction and no drag force and there is no gravity involved
Then, the force acting on an object on earth=
(given)


Hence, option c is true.
Answer:
4 capacitors
Explanation:
Given
--- conducting plates
Required
The number of capacitor (c)
This is calculated as:

So, we have:


<span><span>anonymous </span> 4 years ago</span>Any time you are mixing distance and acceleration a good equation to use is <span>ΔY=<span>V<span>iy</span></span>t+1/2a<span>t2</span></span> I would split this into two segments - the rise and the fall. For the fall, Vi = 0 since the player is at the peak of his arc and delta-Y is from 1.95 to 0.890.
For the upward part of the motion the initial velocity is unknown and the final velocity is zero, but motion is symetrical - it takes the same amount of time to go up as it does to go down. Physiscists often use the trick "I'm going to solve a different problem, that I know will give me the same answer as the one I was actually asked.) So for the first half you could also use Vi = 0 and a downward delta-Y to solve for the time.
Add the two times together for the total.
The alternative is to calculate the initial and final velocity so that you have more information to work with.
This distance is known as the amplitude of the wave, and is the characteristic height of the wave, above or below the equilibrium position. Normally the symbol A is used to represent the amplitude of a wave. The SI unit of amplitude is the metre (m).