To solve this problem we will apply the concepts related to the calculation of the speed of sound, the calculation of the Mach number and finally the calculation of the temperature at the front stagnation point. We will calculate the speed in international units as well as the temperature. With these values we will calculate the speed of the sound and the number of Mach. Finally we will calculate the temperature at the front stagnation point.
The altitude is,

And the velocity can be written as,


From the properties of standard atmosphere at altitude z = 20km temperature is



Velocity of sound at this altitude is



Then the Mach number



So front stagnation temperature



Therefore the temperature at its front stagnation point is 689.87K
That is called a physical trainer or a fitness coach. Hope I helped!
Answer:
4. total energy
Explanation:
According to Bernoulli's principle at any two points along a streamline flow The total energy that is sum of pressure energy , Kinetic energy and potential energy of the liquid all taken in per unit volume remains constant. Therefore,
for ideal fluid flows through a pipe of variable cross section without any friction. The fluid completely fills the pipe. At any given point in the pipe, the fluid has a constant Total Energy.
When there is no air resistance, objects of different masses dropped from rest:
a.
fall with equal accelerations and with equal displacements.
Answer:
<u>
</u> is the centripetal acceleration.
Explanation:
As per given values
Radius of earth (r) = 6371000 m
The "international space station" is orbiting with a velocity (v) = 7667 m/s.
"Centripetal acceleration" is the acceleration is equal to "the square of the velocity" divided by "the radius of the circular path".

V = velocity of the orbit
R = radius of the earth + height of the space station
R = 6,371,000 + 408,000
R = 6779000 m
The direction of the centripetal acceleration is always inwards along the radius vector of the circular motion.



