F=nmv
where;
n=no. of bullets = 1
m=mass of bullets=2g *10^-3
V=velocity of bullets200m/sec
F=1
loss in Kinetic energy=gain in heat energy
1/2MV^2=MS∆t
let M council M
=1/2V^2=S∆t
M=2g
K.E=MV^2/2
=(2*10^-3)(200)^2/2
2 councils 2
2*10^-3*4*10/2
K.E=40Js
H=mv∆t
(40/4.2)
40Js=40/4.2=mc∆t
40/4.2=2*0.03*∆t
=158.73°C
Objects that let in light and blurry images are translucent.
Translucent is a term that refers to an adjective. This characteristic is the property of an object to allow the passage of light, without allowing visibility with high clarity through it.
This term is often confused with transparency. However, they differ because a transparent object lets light through easily and allows you to see clearly through it.
According to the above, objects that allow light to pass through but do not allow clear vision are translucent.
Learn more in: brainly.com/question/10626808
A) Agreed.
<span>b) Value agreed but units should be W (watts). </span>
<span>c) Here's one method... </span>
<span>15 miles = 24140 m </span>
<span>1 gallon of gasoline contains 1.4×10⁸ J. </span>
<span>So moving a distance of 24140m requires gasoline containing 1.4×10⁸ J </span>
<span>Therefore moving a distance of 1m requires gasoline containing 1.4×10⁸/24140 = 5800 J </span>
<span>Overcoming rolling resitance for 1m requires (useful) work = force x distance = 1000x1 = 1000J </span>
<span>So 5800J (in the gasoline) provides 1000J (overcoming rolling resistance) of useful work for each metre moved. </span>
<span>Efficiency = useful work/total energy supplied </span>
<span>= 1000/5800 </span>
<span>= 0.17 (=17%) </span>
Answer:
21.59 m/s
Explanation:
recall that one of the equations of motions can be expressed as
v² = u² + 2as
where,
v = final velocity (we are asked to find this)
u = initial velocity = 0m/s (because it says that it starts from rest)
a = acceleration = 3.7m/s²
s = distance travelled = 63 m
simply substitute the known values above into the equation:
v² = u² + 2as
v² = 0² + 2(3.7)(63)
v² = 466.2
v = √466.2
v = 21.59 m/s
Answer:
52 mm/s (approximately)
Explanation:
Given:
Initial speed of the projectile is, 
Angle of projection is, 
Time taken to land on the hill is, 
In a projectile motion, there is acceleration only in the vertical direction which is equal to acceleration due to gravity acting vertically downward. There is no acceleration in the horizontal direction.
So, the velocity in the horizontal direction always remains the same.
The horizontal component of initial velocity is given as:

Now, the velocity in the vertical direction goes on decreasing and becomes 0 at the highest point of the trajectory. So, at the highest point, only horizontal component acts.
Therefore, the projectile's velocity at the highest point of its trajectory is equal to the horizontal component of initial velocity and thus is equal to 52 mm/s.