Rubbing alcohol is a solution
Do all substances dissolve in water? Kids explore the varying levels of solubility of common household substances in this fun-filled experiment!
Materials Needed:
4 clear, glass jars filled with plain tap water
Flour
Salt
Talcum or baby powder
Granulated sugar
Stirrer
Step 1: Help your child form a big question before starting the experiment.
Step 2: Make a hypothesis for each substance. Perhaps the salt will dissolve because your child has watched you dissolve salt or sugar in water when cooking. Maybe the baby powder will not dissolve because of its powdery texture. Help your child write down his or her predictions.
Step 3: Scoop a teaspoon of each substance in the jars, only adding one substance per jar. Stir it up!
Step 4: Observe whether or not each substance dissolves and record the findings!
Your child will likely note that that sugar and salt dissolve, while the flour will partially dissolve, and the baby powder will remain intact. The grainy crystals of the sugar and salt are easily dissolved in water, but the dry, powdery substances are likely to clump up or remain at the bottom of the jar.
As you can see, the scientific method is easy to work into your child’s scientific experiments. Not only does it increase your child’s scientific learning and critical thinking skills, but it sparks curiosity and motivates kids as they learn to ask questions and prove their ideas! Get started today with the above ideas, and bring the scientific method home to your child during your next exciting science experiment
I think it’s 20 mol
Sorry if I’m wrong
Answer:cathode
Explanation:It is also known as the galvanic cell or electrochemical cell. In the voltaic cell, the oxidation occurs at an anode which is a negative electrode and the reduction occurs at the cathode which is a positive electrode.
Answer:
24.32
Explanation:
From the question given above, the following data were obtained:
Isotope A:
Mass of A = 24
Abundance (A%) = 78.70%
Isotope B
Mass of B = 25
Abundance (B%) = 10.13%
Isotope C:
Mass of C = 26
Abundance (C%) = 11.17%
Average atomic mass of Mg =..?
The average atomic mass of Mg can be obtained as illustrated below:
Average atomic mass = [(Mass of A × A%)/100] + [(Mass of B × B%)/100] + [(Mass of C × C%)/100]
Average atomic mass = [(24 × 78.70)/100] + [(25 × 10.13)/100] + [(26 × 11.17)/100]
= 18.888 + 2.5325 + 2.9042
= 24.3247 ≈ 24.32
Therefore, the average atomic mass of magnesium (Mg) is 24.32