Answer:
31.905 ft/s²
Explanation:
Given that
Mass of the pilot, m = 120 lb
Weight of the pilot, w = 119 lbf
Acceleration due to gravity, g = 32.05 ft/s²
Local acceleration of gravity of found by using the relation
Weight in lbf = Mass in lb * (local acceleration/32.174 lbft/s²)
119 = 120 * a/32. 174
119 * 32.174 = 120a
a = 3828.706 / 120
a = 31.905 ft/s²
Therefore, the local acceleration due to gravity at that elevation is 31.905 ft/s²
<span>Electromagnetic
radiation are represented in waves. Each type of wave has a certain shape and
length. The distance between two peaks in a wave is called the wavelength. It
is indirectly related to the frequency which is the number of wave that pass
per unit of time. Wavelength is equal to the speed of light divided by the
frequency. We calculate as follows:
Wavelength = </span>300,000,000 m/sec / <span>650,000,000,000,000 per second
Wavelength = 4.62x10^-4 m</span>
The length of the wire is 36 m.
<u>Explanation:</u>
Given, Diameter of sphere = 6 cm
We know that, radius can be found by taking the half in the diameter value. So,

Similarly,

We know the below formulas,


When equating both the equations, we can find length of wire as below, where 


The
value gets cancelled as common on both sides, we get

The
value gets cancelled as common on both sides, we get

Answer:


Explanation:
Here mass density of rod is varying so we have to use the concept of integration to find mass and location of center of mass.
At any distance x from point A mass density


Lets take element mass at distance x
dm =λ dx
mass moment of inertia

So total moment of inertia

By putting the values

By integrating above we can find that

Now to find location of center mass


Now by integrating the above


So mass moment of inertia
and location of center of mass 
L = r x p = rmv = mr²ω
L = 0.25 x 0.75² x 12.5 = 1.758