The size v=masse/density
v= 4*pi*R^3
R=(3*masse/(4*pi*density))^(1/3)
R=1.9695 cm
Answer :
The time taken by the reaction is 19.2 seconds.
The order of reaction is, second order reaction.
Explanation :
The general formula to determine the unit of rate constant is:

Unit of rate constant Order of reaction
0
1
2
As the unit of rate constant is
. So, the order of reaction is second order.
The expression used for second order kinetics is:
![kt=\frac{1}{[A_t]}-\frac{1}{[A_o]}](https://tex.z-dn.net/?f=kt%3D%5Cfrac%7B1%7D%7B%5BA_t%5D%7D-%5Cfrac%7B1%7D%7B%5BA_o%5D%7D)
where,
k = rate constant = 
t = time = ?
= final concentration = 0.97 M
= initial concentration = 2.48 M
Now put all the given values in the above expression, we get:


Therefore, the time taken by the reaction is 19.2 seconds.
Great amounts of atomic energy are released when
a _______reaction occurs.
Great amounts of atomic energy
are released when a chemical reaction occurs. The process can be an exothermic reaction
or endothermic reaction depending on the substances involved in the reaction.
Answer: OH−.
Explanation: Hydroxide, any chemical compound containing one or more groups, each comprising one atom each of oxygen and hydrogen bonded together and functioning as the negatively charged ion OH-.