Answer:
Four fundamental forces are gravitational, electromagnetic, strong, and weak.
Explanation:
The gravitational and electromagnetic interactions, which produce significant long-range forces whose effects can be seen directly in everyday life and the strong and weak interactions, which produce forces at minuscule, subatomic distances and govern nuclear interactions.
Answer:
it started to move a 1 second
Senators are elected in statewide elections rather than in specific districts. <em>(D)</em>
Answer:
W = 3/2 n (T₁- T₂)
Explanation:
Let's use the first law of thermodynamics
ΔE = Q + W
in this case the cylinder is insulated, so there is no heat transfer
ΔE = W
internal energy can be related to the change in temperature
ΔE = 3/2 n K ΔT
we substitute
3/2 n (T₂-T₁) = W
as the work is on the gas it is negative
W = 3/2 n (T₁- T₂)
Answer:
The astronaut's mass is 16 kg.
Explanation:
Mass can be defined as a measure of the amount of matter an object or a body comprises of. The standard unit of measurement of the mass of an object or a body is kilograms.
Irrespective of the location of an object or a body at a given moment in time, the mass (amount of matter that they're made up of) is constant. This ultimately implies that, whether you're in the moon, space, earth or any other place, your mass remains the same (constant).
Therefore, if an astronaut has a mass of 16 Kg on Earth, his mass on the moon and on the space station would remain the same, as his original mass of 16 Kg because mass is indestructible.