Answer:
A force must s applied to a wall or roof rafters to add strength and keep the building straight and plumb
Answer: a) The technology that deals with the generation, control and transmission of power using pressurized fluids
Explanation: Fluid power is defined as the fluids which are under pressure and then are used for generation,control and transmit the power. Fluid power systems produces high forces as well as power in small amount . These systems usually tend to have better life if maintained properly. The force that are applied on this system can be monitored by gauges as well as meter.
Answer:
Explanation:
a) the steady-state, 1-D incompressible and no energy generation equation can be expressed as follows:

b) For a transient, 1-D, constant with energy generation
suppose T = f(x)
Then; the equation can be expressed as:

where;
= heat generated per unit volume
= Thermal diffusivity
c) The heat equation for a cylinder steady-state with 2-D constant and no compressible energy generation is:

where;
The radial directional term =
and the axial directional term is 
d) The heat equation for a wire going through a furnace is:
![\dfrac{\partial ^2 T}{\partial z^2} = \dfrac{1}{\alpha}\Big [\dfrac{\partial ^2 T}{\partial ^2 t}+ V_z \dfrac{\partial ^2T}{\partial ^2z} \Big ]](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cpartial%20%5E2%20T%7D%7B%5Cpartial%20z%5E2%7D%20%3D%20%5Cdfrac%7B1%7D%7B%5Calpha%7D%5CBig%20%5B%5Cdfrac%7B%5Cpartial%20%5E2%20T%7D%7B%5Cpartial%20%5E2%20t%7D%2B%20V_z%20%5Cdfrac%7B%5Cpartial%20%5E2T%7D%7B%5Cpartial%20%5E2z%7D%20%5CBig%20%5D)
since;
the steady-state is zero, Then:
'
e) The heat equation for a sphere that is transient, 1-D, and incompressible with energy generation is:

Answer:
It will not experience fracture when it is exposed to a stress of 1030 MPa.
Explanation:
Given
Klc = 54.8 MPa √m
a = 0.5 mm = 0.5*10⁻³m
Y = 1.0
This problem asks us to determine whether or not the 4340 steel alloy specimen will fracture when exposed to a stress of 1030 MPa, given the values of <em>KIc</em>, <em>Y</em>, and the largest value of <em>a</em> in the material. This requires that we solve for <em>σc</em> from the following equation:
<em>σc = KIc / (Y*√(π*a))</em>
Thus
σc = 54.8 MPa √m / (1.0*√(π*0.5*10⁻³m))
⇒ σc = 1382.67 MPa > 1030 MPa
Therefore, the fracture will not occur because this specimen can handle a stress of 1382.67 MPa before experience fracture.
Answer:
1) "Most germs are too small to cause disease" http://ecufrog.weebly.com/uploads/8/6/7/7/8677638/850_meet_the_microbes.pdf
2) "Some bacteria that live in your body are helpful. For instance, Lactobacillus acidophilus... helps you digest food, destroys some disease-causing organisms and provides nutrients." https://www.mayoclinic.org/diseases-conditions/infectious-diseases/in-depth/germs/art-20045289