Answer:
Tc = 424.85 K
Explanation:
Given that,





HEAT FLOW Q is

= 47123.88 w per unit length of rod
volumetric heat rate





= 424.85 K
Answer:
Engineering aims to allow technical parts, structures and/or systems, such as those of a machine, to fulfill their function. To this end, occurring and/or desired processes (the operation thereof) are investigated and elaborated. Appropriate parts are designed individually or in a team, occurring stresses are calculated and the parts to be produced are modeled and/or specified on technical drawings. In some fields, maintenance is a standard part of the work to be performed. For a large part of engineering, standards and agreements have been drawn up with a view to the desired safety and practical applicability.
Answer: P = 0.416 kW
Explanation:
taken a step by step process to solving this problem.
we have that from the question;
the amount of heat rejected Qn = 4800 kJ/h
the cooling effect is Ql = 3300 kJ/h
Applying the first law of thermodynamics for this system gives us
Шnet = Qn -Ql
Шnet = 4800 - 3300 = 1500 kJ/h
Next we would calculate the coefficient of performance of the refrigerator;
COPr = Desired Effect / work output = Ql / Шnet = 3300/1500 = 2.2
COPr = 2.2
The Power as required gives;
P = Qn - Ql = 4800 - 3300 = 1500 kJ/h = 0.416
P = 0.416 kW
cheers i hope this helps!!!!1
Answer:
probability P = 0.32
Explanation:
this is incomplete question
i found complete A manufactures makes integrated circuits that each have a resistance layer with a target thickness of 200 units. A circuit won't work well if this thickness varies too much from the target value. These thickness measurements are approximately normally distributed with a mean of 200 units and a standard deviation of 12 units. A random sample of 17 measurements is selected for a quality inspection. We can assume that the measurements in the sample are independent. What is the probability that the mean thickness in these 16 measurements x is farther than 3 units away from the target value?
solution
we know that Standard error is expess as
Standard error = 
Standard error =
Standard error = 3
so here we get Z value for 3 units away are from mean are
mean = -1 and + 1
so here
probability P will be
probability P = P( z < -1 or z > 1)
probability P = 0.1587 + 0.1587
probability P = 0.3174
probability P = 0.32