The statement "An atom with high ionization energy will form a positive ion more easily than an atom with low ionization energy" is false.
In this context , we will define ionization energy as the minimum energy required to remove a valence electron from a neutral atom in it's gaseous state. In a sense the ionization energy is a measure the amount of 'difficulty' of making something an ion. A high ionization energy means that it takes a lot of energy to remove a valence electron from that atom. A low ionization energy means that it is easy to remove a valence electron from the atom. It is known that group 1 elements generally have a low ionization energy. On the other hand, it is harder for noble gasses and group 7 atoms to loose electrons because they have higher ionization energy.
To form a positive ion, you have to remove an electron. When an electron is removed from an atom, there ion formed has more positive charges than negative charges in it, making it net positive. We have established that atoms with low ionization energy loose elections much more easily. We have also established that atoms with high ionization energy do not loose electrons easily. From this we can gather that the statement is false. An atom with high ionization energy will not form a positive ion more easily that an atom with low ionization energy.
The structural formula for 2-methylpentane is in Figure 1. It shows all the C-C and C-H bonds explicitly.
The bond-line formula for 2-methylpentane is in Figure 2. We assume that a carbon atom is at the ends and junctions of the lines. We do not show the H atom, but we mentally assume that there are enough to give each carbon a valence of four.
A condensed structural formula is designed to be typed <em>all on one line</em>. We could write the condensed structural formula for 2-methylpentane as either (CH₃)₂CH-CH₂-CH₂-CH₃ or CH₃CH(CH₃)CH₂CH₂CH₃.
The horizontal C-C bonds are <em>optional </em>— you can include or omit them as desired.
The answer should be (D) endothermic reaction.
Reason : - Reactions in which energy is absorbed are called endothermic reactions. In your provided question, 150 kcal energy is being <u>absorbed</u>, and thus, we can say that it is an endothermic reaction.
Answer:
Most acid precipitation results from the combination of <u>Sulfur Oxides and Nitrogen Oxides</u> with water in the atmosphere, forming strong acids that fall with rain or snow.
Explanation:
Acid rain is said to be that rain which contains high concentration of H⁺ ions. The main source of acid rain is the elimination of NOₓ (Nitrogen Oxides) and SOₓ (Sulfur Oxides) from different means in industries and other combustion processes on earth.
Examples:
SO₂ + H₂O → H₂SO₄
NO₂ + OH° → HNO₃
From above examples it can be seen that the sulfur and nitrogen oxides when reacted with water forms strong acids. These acids come along with rain water and causes different problems to living organisms and non living objects like buildings.
The given complex ion is as follow,
[Ru (CN) (CO)₄]⁻
Where;
[ ] = Coordination Sphere
Ru = Central Metal Atom = <span>Ruthenium
CN = Cyanide Ligand
CO = Carbonyl Ligand
The charge on Ru is calculated as follow,
Ru + (CN) + (CO)</span>₄ = -1
Where;
-1 = overall charge on sphere
0 = Charge on neutral CO
-1 = Charge on CN
So, Putting values,
Ru + (-1) + (0)₄ = -1
Ru - 1 + 0 = -1
Ru - 1 = -1
Ru = -1 + 1
Ru = 0
Result:
<span>Oxidation state of the metal species in each complex [Ru(CN)(CO)</span>₄]⁻ is zero.