I’m confused what are you asking exactly?
Answer:

Explanation:
Hello there!
In this case, we can identify the solution to this problem via the Dalton's rule because the partial pressure of helium is given by:

Whereas the mole fraction of helium is calculated by firstly obtaining the moles and then the mole fraction:

Then, we calculate the partial pressure as shown below:

Best regards!
Answer:
This means the amount of PbCrO4 will precipitate first, with a [Pb^2+] concentration of 1.8*10^-12 M
Explanation:
Step 1: Data given
Molarity of Na2CrO4 = 0.010 M
Molarity of NaBr = 2.5 M
Ksp(PbCrO4) = 1.8 * 10^–14
Ksp(PbBr2) = 6.3 * 10^–6
Step 2: The balanced equation
PbCrO4 →Pb^2+ + CrO4^2-
PbBr2 → Pb^2+ + 2Br-
Step 3: Define Ksp
Ksp PbCrO4 = [Pb^2+]*[CrO4^2-]
1.8*10^-14 = [Pb^2+] * 0.010 M
[Pb^2+] = 1.8*10^-14 /0.010
[Pb^2+] = 1.8*10^-12 M
The minimum [Pb^2+] needed to precipitate PbCrO4 is 1.8*10^-12 M
Ksp PbBr2 = [Pb^2+][Br-]²
6.3 * 10^–6 = [Pb^2+] (2.5)²
[Pb^2+] = 1*10^-6 M
The minimum [Pb^2+] needed to precipitate PbBr2 is 1*10^-6 M
This means the amount of PbCrO4 will precipitate first, with a [Pb^2+] concentration of 1.8*10^-12 M
To much letters and numbers
Answer:
in the wire last one is right