Answer:
Partial pressure for each of the three gases, in the mixture is 15 atm
Explanation:
Remember that the total pressure of a mixture, is the sum of partial pressures from the gases contained in the mixture.
Our total pressure = 45 atm
The 3 gases have the same pressure, so we can propose this equation:
3x = 45 atm
where x is the partial pressure for each of the three gases.
x = 45/3 → 15 atm
The system is isothermal, so we use the formula:
(delta)G = (delta)H - T (delta) S
Plugging in the given values:
(delta)G = -220 kJ/ mol - (1000K) (-0.05 kJ/mol K)
(delta)G = -170 kJ/mol
If we take a basis of 1 mol, the answer is
D. -170 kJ
Answer:
As you go down group 1, the number of electron shells increases – lithium has two, sodium has three, and so forth. The attraction from the positive nucleus to the negative electron is less. This makes it easier to remove the electron and makes the atom more reactive.
Answer:
V = 65.81 L
Explanation:
En este caso, debemos usar la expresión para los gases ideales, la cual es la siguiente:
PV = nRT (1)
Donde:
P: Presion (atm)
V: Volumen (L)
n: moles
R: constante de gases (0.082 L atm / mol K)
T: Temperatura (K)
De ahí, despejando el volumen tenemos:
V = nRT / P (2)
Sin embargo como estamos hablando de condiciones normales de temperatura y presión, significa que estamos trabajando a 0° C (o 273 K) y 1 atm de presión. Lo que debemos hacer primero, es calcular los moles que hay en 50 g de amoníaco, usando su masa molar de 17 g/mol:
n = 50 / 17 = 2.94 moles
Con estos moles, reemplazamos en la expresión (2) y calculamos el volumen:
V = 2.94 * 0.082 * 273 / 1
<h2>
V = 65.81 L</h2>
The H-atom has fourth energy level with n=4.
This
energy level can have values of orbital angular momentum l = 0, 1, 2, 3
Now each l can also have magnetic momentum ml from – l to l.
Therefore,
l = 0
<span>ml = 0 </span>
l = 1
ml = -1, 0, 1
l = 2
ml = -2, -1, 0, 1, 2
l = 3
ml = -3, -2, -1, 0, 1, 2, 3
Now adding up all the number of ml’s will give us the total
number of orbitals:
orbitals = 1 + 3 + 5 + 7
orbitals = 16
Alternatively, we can simply use the formula:
<span>orbitals = n^2 = 4^2 = 16</span>