Answer:
40.94 g
Explanation:
Given data:
Mass of NO₂ = ?
Volume = 20.0 L
Pressure = 110.0 Pka
Temperature = 25°C
Solution:
Pressure = 110.0 KPa (110/101 = 1.1 atm)
Temperature = 25°C (25+273 = 298.15 K)
The given problem will be solve by using general gas equation,
PV = nRT
P= Pressure
V = volume
n = number of moles
R = general gas constant = 0.0821 atm.L/ mol.K
T = temperature in kelvin
n = PV/RT
n = 1.1 atm × 20.0 L / 0.0821 atm.L/ mol.K ×298.15 K
n = 22 / 24.5 /mol
n= 0.89 mol
Mass of NO₂:
Mass = number of moles × molar mass
Mass = 0.89 mol × 46 g/mol
Mass = 40.94 g
Answer:

Explanation:
Hello,
In this case, considering that the safe temperature may be computed via the ideal gas law as we now the pressure, mass and volume via the dimensions:

The pressure in atm is:

And the moles considering the mass and molar mass (66 g/mol) of dinitrogen difluoride (N₂F₂):

In sich a way, by applying the ideal gas equation, which is not the best assumption but could work as an approximation due to the high temperature, the temperature, with three significant figures, will be:

Best regards.
Particle exchange energy though elastic collision , hope this helps .
B. Newton
Is the metric unit of force
C is incorrect. I has 21 PROTONS in its nucleus. Not neutrons.