<span>A light year is equal to
</span>5,866,000,000,000,000!
Sorry
Answer:

Explanation:
![\Delta H_{rxn}^{0}=\sum [n_{i}\times \Delta H_{f}^{0}(product)_{i}]-\sum [n_{j}\times \Delta H_{f}^{0}(reactant_{j})]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%5E%7B0%7D%3D%5Csum%20%5Bn_%7Bi%7D%5Ctimes%20%5CDelta%20H_%7Bf%7D%5E%7B0%7D%28product%29_%7Bi%7D%5D-%5Csum%20%5Bn_%7Bj%7D%5Ctimes%20%5CDelta%20H_%7Bf%7D%5E%7B0%7D%28reactant_%7Bj%7D%29%5D)
Where
and
are number of moles of product and reactant respectively (equal to their stoichiometric coefficient).
is standard heat of formation and
is standard enthalpy change for reaction at 
So, ![\Delta H_{rxn}=[3mol\times \Delta H_{f}^{0}(CO_{2})_{g}]+[4mol\times \Delta H_{f}^{0}(H_{2}O)_{g}]-[1mol\times \Delta H_{f}^{0}(C_{3}H_{8})_{g}]-[5mol\times \Delta H_{f}^{0}(O_{2})_{g}]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B3mol%5Ctimes%20%5CDelta%20H_%7Bf%7D%5E%7B0%7D%28CO_%7B2%7D%29_%7Bg%7D%5D%2B%5B4mol%5Ctimes%20%5CDelta%20H_%7Bf%7D%5E%7B0%7D%28H_%7B2%7DO%29_%7Bg%7D%5D-%5B1mol%5Ctimes%20%5CDelta%20H_%7Bf%7D%5E%7B0%7D%28C_%7B3%7DH_%7B8%7D%29_%7Bg%7D%5D-%5B5mol%5Ctimes%20%5CDelta%20H_%7Bf%7D%5E%7B0%7D%28O_%7B2%7D%29_%7Bg%7D%5D)
or, ![\Delta H_{rxn}=[3mol\times -393.509kJ/mol]+[4mol\times -241.818kJ/mol]-[1mol\times -103.8kJ/mol]-[5mol\times 0kJ/mol]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B3mol%5Ctimes%20-393.509kJ%2Fmol%5D%2B%5B4mol%5Ctimes%20-241.818kJ%2Fmol%5D-%5B1mol%5Ctimes%20-103.8kJ%2Fmol%5D-%5B5mol%5Ctimes%200kJ%2Fmol%5D)
or, 
A. When the substance is in its gaseous state.
<u>Explanation:</u>
When a substance is expanding against its constant volume and pressure, its temperature increases except when the substance is in gaseous state and not in liquid or solid state. So the internal energy increase in the system not only increases and maintaining the volume and pressure of the system remains constant in its gaseous phase. In the first law of Thermodynamics, it is used specifically that to especially in the case of gaseous system.
<u></u>
I will, I am in a chemistry class right now. What’s up?