Answer:
The average velocity of a train moving along a straight track if its displacement is 192 m was during a time period of 8.0 s is 24
.
Explanation:
Velocity is a physical quantity that expresses the relationship between the space traveled by an object and the time used for it. Then, the average velocity relates the change in position to the time taken to effect that change.

Velocity considers the direction in which an object moves, so it is considered a vector magnitude.
In this case, the displacement is 192 m and the time period is 8 s. Replacing:

Solving:
velocity= 24 
<em><u>The average velocity of a train moving along a straight track if its displacement is 192 m was during a time period of 8.0 s is 24 </u></em>
<em><u>.</u></em>
Answer:
<em>1.228 x </em>
<em> mm </em>
<em></em>
Explanation:
diameter of aluminium bar D = 40 mm
diameter of hole d = 30 mm
compressive Load F = 180 kN = 180 x
N
modulus of elasticity E = 85 GN/m^2 = 85 x
Pa
length of bar L = 600 mm
length of hole = 100 mm
true length of bar = 600 - 100 = 500 mm
area of the bar A =
=
= 1256.8 mm^2
area of hole a =
=
= 549.85 mm^2
Total contraction of the bar =
total contraction =
==>
= <em>1.228 x </em>
<em> mm </em>
Answer:
C. 590 mph

Explanation:
Given:
- velocity of jet,

- direction of velocity of jet, east relative to the ground
- velocity of Cessna,

- direction of velocity of Cessna, 60° north of west
Taking the x-axis alignment towards east and hence we have the velocity vector of the jet as reference.
Refer the attached schematic.
So,

&


Now the vector of relative velocity of Cessna with respect to jet:



Now the magnitude of this velocity:

is the relative velocity of Cessna with respect to the jet.
The Virtual Laboratory is an interactive environment for creating and conducting simulated experiments: a playground for experimentation. It consists of domain-dependent simulation programs, experimental units called objects that encompass data files, tools that operate on these objects
let the distance of pillar is "r" from one end of the slab
So here net torque must be balance with respect to pillar to be in balanced state
So here we will have

here we know that
mg = 19600 N
Mg = 400,000 N
L = 20 m
from above equation we have



so pillar is at distance 10.098 m from one end of the slab