Answer:
Explanation:
The energy of Mass-Spring System the sum of the potential energy of the block plus the kinetic energy of the block:

Where:

There are two cases, the first case is when the spring is compressed to its maximum value, in this case the value of the kinetic energy is zero, since there is no speed, so:

The second case is when the block passes through its equilibrium position, in this case the elastic potential energy is zero since
, so:

Now, let's find the energy of the system when the block is replaced by one whose mass is twice the mass of the original block using the previous data:

Where in this case:

Therefore:

Answer:
15km
Explanation:
Given parameters:
Average speed = 60km/hr
Time taken = 15min
Unknown:
Distance = ?
Solution:
The distance traveled can de derived using the expression below;
Distance = Average speed x time taken
Now let us convert the time to hr;
60min = 1hr
15min =
= 0.25hr
Distance = 60km/hr x 0.25hr = 15km
These types include gamma rays, x-rays, ultraviolet, infrared, microwaves and radio waves. Together with visible light, all these types of radiation make up what we call the electromagnetic spectrum - the complete spectrum of radiation.
Answer:
correct answer is (c) 15 J
Explanation:
given data
mass m1 = 2 kg
velocity V1 = 5 m/s
mass other = 3 kg
so mass m2 = 2+ 3 kg = 5 kg
solution
we will apply here conservation of momentum:
m1V1 = m2V2 ..........................1
put here value and we get velocity v2
(2.0) × (5.0) = (2.0 + 3.0) × V
solve it we get
10 = 5 × V
2
V2 = 2.0 m/s
so here kinetic energy will be
KE = ½ × m × v²
so
∆KE = ½ × m1 × (v1)² - ½ × m2 × (v2)
²
∆KE = 0.5 × 2 × 25 - 0.5 × 5 × 4
∆KE = 25 - 10
∆KE = 15 J
Answer:
A light-year is the distance light travels in one year. How far is that? Multiply the number of seconds in one year by the number of miles or kilometers that light travels in one second, and there you have it: one light-year. It's about 5.88 trillion miles (9.5 trillion km).
Explanation: