Mass x SH x °C (or K) ΔT
= 75g x 0.45J/g/K x 6.0 ΔT
= 202.5 Joules of heat absorbed.
(202.5J / 4.184J/cal = 48.4 calories).
I guess that is the answer
The distance covered by car is equal to (assuming it is moving by uniform motion) the product between the car's speed and the time of the car ride, 4 h:

where

is the car's speed

is the duration of the car ride
Similarly, the distance covered by train is equal to the product between the train's speed and the duration of the train ride, 7 h:

The total distance covered is S=255 km, which is the sum of the distances covered by car and train:

which becomes

(1)
we also know that the train speed is 5 km/h greater than the car's speed:

(2)
If we put (2) into (1), we find

and if we solve it, we find


So, the car speed is 20 km/h and the train speed is 25 km/h.
Answer:
17,947.02 Hz
Explanation:
length (L) = 62 cm = 0.62 m
tension (T) = 70 N
mass per unit length (μ) = 0.10000 g/cm = 0.010000 kg/m
maximum frequency = 18,000 Hz
f = 
f = 
f = n x 67.47
18,000 = n x 67.47
n = 266.8≈ 266
the 267th overtone is the highest overtone that can be heard by this person, and its frequency would be 26 x 67.47 = 17,947.02 Hz
In both cases less energy is required
But comparetively Mg require more energy than K
Let's see the electron configuration of Both
- [Mg]=1s²2s²2p⁶3s²=[Ne]3s²
- [K]=1s²2s²2p⁶3s²3p⁶4s¹=[Ar]4s¹
K has only one valence electron so very less ionization enthalpy so less energy required
Mg has 2 so more IE hence more energy required
Explanation:
Average power = change in energy / change in time
P = ΔE / Δt
P = (½ mv²) / t
P = (½ (0.825 kg) (0.620 m/s)²) / (0.021 s)
P = 7.55 Watts