1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anna007 [38]
2 years ago
13

*3–32. The rubber block is subjected to an elongation of 0.03 in. along the x axis, and its vertical faces are given a tilt so t

hat θ = 89.3 ° . Determine the strains ε x , ε y and γ x y . Take ν r = 0.5.

Engineering
1 answer:
riadik2000 [5.3K]2 years ago
3 0

Rubber block is not shown. I have attached an image of it.

Answer:

A) ε_x = 0.0075

B) ε_y = 0.00375

C) γ_xy = 0.0122 rad

Explanation:

We are given;

δ = 0.03 in

L = 4 in

ν_r = 0.5

θ = 89.3° = 89.3π/180 rad

Let's calculate ε_x in the direction of axis x

Thus, ε_x = δ/L = 0.03/4 = 0.0075

Let's calculate ε_y in the direction of axis y;

ε_y = v•ε_x = 0.5 x 0.0075 = 0.00375

Now, shear strain is angle between π/2 rad surfaces at that point.

Thus,

γ_xy =  π/2 - θ = π/2 - 89.3π/180

γ_xy = π(0.003889) = 0.0122 rad

You might be interested in
A pressure gage at the inlet to a gas compressor indicates that the gage pressure is 40.0 kPa. Atmospheric pressure is 1.01 bar.
bonufazy [111]

Answer:

Given

inlet Pga =40kpa = 40000pa

Patm=1.01bar = 1.01 x 100000pa =101000pa

exit Pab= 6.5 (inlet Pab)

But generally, Pab = Patm + Pga

1. the absolute pressure of the gas at the inlet, inlet Pab?

inlet Pab = Patm + inlet Pga

            = 101000pa + 40000pa = 141kpa

the absolute pressure of the gas at the inlet, inlet Pab = 141kpa

2. the gage pressure of the gas at the exit? exit Pga?

exit Pab = Patm + exit Pga

exit Pga = exit Pab - Patm

             = (6.5 x 141kpa) - 101kpa

              = 815.5kpa

the gage pressure of the gas at the exit exit Pga=815.5kpa

5 0
3 years ago
Regeneration can only increase the efficiency of a Brayton cycle when working fluid leaving the turbine is hotter than the worki
storchak [24]

Answer:

True, <em>Regeneration is the only process where increases the efficiency of a Brayton cycle when working fluid leaving the turbine is hotter than working fluid leaving the compressor</em>.

Option: A

<u>Explanation: </u>

To increase the efficiency of brayton cycle there are three ways which includes inter-cooling, reheating and regeneration. <em>Regeneration</em> technique <em>is used when a turbine exhaust fluids have higher temperature than the working fluid leaving the compressor of the turbine. </em>

<em>Thermal efficiency</em> of a turbine is increased as <em>the exhaust fluid having higher temperatures are used in heat exchanger where the fluids from the compressor enters and increases the temperature of the fluids leaving the compressor. </em>

6 0
3 years ago
Read 2 more answers
You are investigating surface hardening in iron using nitrogen gas. Two 5 mm thick slabs of iron are separately exposed to nitro
Luden [163]

Answer and Explanation:

The explanation is attached below

4 0
3 years ago
The 150-lb man sits in the center of the boat, which has a uniform width and a weight per linear foot of 3 lb&gt;ft. Determine t
irina1246 [14]

Answer:

M = 281.25 lb*ft

Explanation:

Given

W<em>man</em> = 150 lb

Weight per linear foot of the boat: q = 3 lb/ft

L = 15.00 m

M<em>max</em> = ?

Initially, we have to calculate the Buoyant Force per linear foot (due to the water exerts a uniform distributed load upward on the bottom of the boat):

∑ Fy = 0  (+↑)     ⇒    q'*L - W - q*L = 0

⇒       q' = (W + q*L) / L

⇒       q' = (150 lb + 3 lb/ft*15 ft) / 15 ft

⇒       q' = 13 lb/ft   (+↑)

The free body diagram of the boat is shown in the pic.

Then, we apply the following equation

q(x) = (13 - 3) = 10   (+↑)

V(x) = ∫q(x) dx = ∫10 dx = 10x   (0 ≤ x ≤ 7.5)

M(x) = ∫10x dx = 5x²  (0 ≤ x ≤ 7.5)

The maximum internal bending moment occurs when x = 7.5 ft

then

M(7.5) = 5(7.5)² = 281.25 lb*ft

8 0
3 years ago
What is the definition of a duty cycle?
ira [324]

Answer:

D=\frac{PW}{T}*100

Explanation:

In electrical terms, is the ratio of time in which a load or circuit is ON compared to the time in which the load or circuit is OFF.

The duty cycle or power cycle, is expressed as a percentage of the activation time. For example, a 70% duty cycle is a signal that 70% of the time is activated and the other 30% disabled. Its equation can be expressed as:

D=\frac{PW}{T}*100

Where:

D=Duty\hspace{3}Cycle

PW=Pulse\hspace{3}Active\hspace{3}Time

T=Period\hspace{3}of\hspace{3}the\hspace{3}Signal

Here is a picture that will help you understand these concepts.

5 0
3 years ago
Other questions:
  • Drag each tile to the correct box.
    15·1 answer
  • Technician A says ASE certification is mandatory in all 50 states before performing an automotive repair for pay. Technician B s
    12·1 answer
  • A long homogeneous resistance wire of radius ro = 5 mm is being used to heat the air in a room by the passage of electric curren
    15·1 answer
  • Is air conditioner a refrigerator?
    10·1 answer
  • Air enters the compressor of a cold air-standard Brayton cycle with regeneration and reheat at 100 kPa, 300 K, with a mass flow
    10·1 answer
  • Consider a CMOS inverter which has ideal transistors with the following characteristics: PMOS transistor: W/L = 2; Mobility (up)
    13·1 answer
  • A plane wall of thickness 2L = 60 mm and thermal conductivity k= 5W/m.K experiences uniform volumetric heat generation at a rate
    9·1 answer
  • 10. To cut 1/4" (6 mm) thick mild steel at a rate of 40 inches per minute, the current would be set to
    7·1 answer
  • true or false modeling is making predictions about future data points not associated with your equation? Explain why.​
    12·1 answer
  • One of the best ways to increase engine power and control detonation and preignition is to?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!