Answer:
311.25k
Explanation:
The question assumes heat is not lost to the surroundings, therefore
heat emitted from hotter sample (
)= heat absorbed by the less hotter sample(
)
The relationship between heat (q), mass (m) and temperature (t) is 
where c is specific heat capacity,
temperature change.
= 
equating both heat emitted and absorb


where the values with subset 1 are the values of the hotter sample of water and the values with subset 2 are the values of the less hot sample of water.
C will cancel out since both are water and they have the same specific heat capacity.
so we have

where m1 = 50g, t 1initial = 330, m2 = 30g, t2 initial = 280,t final (final temperature of the mixture) = ?
-50 * (
- 330) = 30 * (
- 280)
-50
+ 16500 = 30
- 8400
80
= 16500+8400
80
= 24900
= 24900/80 = 311.25k
Answer : The activation energy for the reaction is, 52.9 kJ/mol
Explanation :
According to the Arrhenius equation,

or,
![\log (\frac{K_2}{K_1})=\frac{Ea}{2.303\times R}[\frac{1}{T_1}-\frac{1}{T_2}]](https://tex.z-dn.net/?f=%5Clog%20%28%5Cfrac%7BK_2%7D%7BK_1%7D%29%3D%5Cfrac%7BEa%7D%7B2.303%5Ctimes%20R%7D%5B%5Cfrac%7B1%7D%7BT_1%7D-%5Cfrac%7B1%7D%7BT_2%7D%5D)
where,
= initial temperature = 
= final temperature = 
= rate constant at
= 
= rate constant at
= 
= activation energy for the reaction = ?
R = gas constant = 8.314 J/mole.K
Now put all the given values in this formula, we get:
![\log (\frac{25.0s^{-1}}{12.5s^{-1}})=\frac{Ea}{2.303\times 8.314J/mole.K}[\frac{1}{298.0K}-\frac{1}{308.0K}]](https://tex.z-dn.net/?f=%5Clog%20%28%5Cfrac%7B25.0s%5E%7B-1%7D%7D%7B12.5s%5E%7B-1%7D%7D%29%3D%5Cfrac%7BEa%7D%7B2.303%5Ctimes%208.314J%2Fmole.K%7D%5B%5Cfrac%7B1%7D%7B298.0K%7D-%5Cfrac%7B1%7D%7B308.0K%7D%5D)

Therefore, the activation energy for the reaction is, 52.9 kJ/mol
Ernest Rutherford discovered the nucleus. This enabled other scientists to create a model in which electrons fly around the nucleus similarly to how the solar system works.