The student that measured the mass to be 16110g got closest to the known result. She is off by 10 g.
Answer:
(a) The magnitude of the electric dipole moment is 1.68 x 10⁻¹⁴ C.m
(b) The difference between the potential energies ΔU, is 4.6704 x 10⁻¹¹ J
Explanation:
Given;
magnitude of charge, q = 2 nC = 2 x 10⁻⁹ C
distance of separation, d = 8.4 μm = 8.4 x 10⁻⁶ m
strength of electric field, E = 1390 N/C
(a) the magnitude of the electric dipole moment
p = qd
p = (2 x 10⁻⁹ C)(8.4 x 10⁻⁶ m)
p = 1.68 x 10⁻¹⁴ C.m
(b) the difference between the potential energies for dipole orientations parallel and anti-parallel to E
ΔU = U(180) - U(0)
ΔU = 2pE
ΔU = 2(1.68 x 10⁻¹⁴ )(1390)
ΔU = 4.6704 x 10⁻¹¹ J
Answer:
speed =distance/time taken
5 m/s
Answer:
the time taken for the object to fall is 6 s.
Explanation:
Given;
final velocity of the object, v = 58.8 m/s
initial velocity of the object, u = 0
The height of fall of the object is calculated as;
v² = u² + 2gh
v² = 2gh

The time to fall through the height is calculated as;

Therefore, the time taken for the object to fall is 6 s.