Answer:
The solutions are ordered by this way (from lowest to highest freezing point): K₃PO₄ < CaCl₂ < NaI < glucose
Option d, b, a and c
Explanation:
Colligative property: Freezing point depression
The formula is: ΔT = Kf . m . i
ΔT = Freezing T° of pure solvent - Freezing T° of solution
We need to determine the i, which is the numbers of ions dissolved. It is also called the Van't Hoff factor.
Option d, which is glucose is non electrolyte so the i = 1
a. NaI → Na⁺ + I⁻ i =2
b. CaCl₂ → Ca²⁺ + 2Cl⁻ i =3
c. K₃PO₄ → 3K⁺ + PO₄⁻³ i=4
Potassium phosphate will have the lowest freezing point, then we have the calcium chloride, the sodium iodide and at the end, glucose.
Answer : The products are Silver sulfide, and Sodium iodide, .
Explanation :
The given balanced chemical reaction is,
From the given balanced reaction, we conclude that the 2 moles of silver iodide react with the 1 mole of sodium sulfide to give product as 1 mole of silver sulfide and 2 moles of sodium iodide.
In a chemical reaction, reactants are represent on the left side of the right-arrow and products are represent on the right side of the right-arrow.
Therefore, in a chemical reaction the products are Silver sulfide and Sodium iodide.
1000 mL=1L
25 mL = 0.025 L
125 mL = 0.125 L
M1V1=M2V2
0.15(0.125) = M2(0.025)
0.01875 = M2(0.025)
0.75 = M2
0.75 M
<span>The energy needed to remove an electron from an atom is called ionization energy.</span>