1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Aloiza [94]
3 years ago
8

A bicyclist makes a trip that consists of three parts, each in the same direction (due north) along a straight road. During the

first part, she rides for 26.8 minutes at an average speed of 7.57 m/s. During the second part, she rides for 42.4 minutes at an average speed of 3.17 m/s. Finally, during the third part, she rides for 9.69 minutes at an average speed of 15.0 m/s. (a) How far has the bicyclist traveled during the entire trip
Physics
1 answer:
makkiz [27]3 years ago
7 0

Answer:

(a) She has traveled a total distance of 28958.04 m during the entire trip.

(b) Her average velocity for the trip is 6.12 m/s

Explanation:

Here is the complete question:

A bicyclist makes a trip that consists of three parts, each in the same direction (due north) along a straight road. During the first part, she rides for 26.8 minutes at an average speed of 7.57 m/s. During the second part, she rides for 42.4 minutes at an average speed of 3.17 m/s. Finally, during the third part, she rides for 9.69 minutes at an average speed of 15.0 m/s. (a) How far has the bicyclist traveled during the entire trip?  (b) What is her average velocity for the trip?

Explanation:

(a) To determine how far the bicyclist has traveled during the entire trip, we will calculate the distance she covered in each part of the trip, and then sum up the distances to determine the total distance covered.

  • First, The distance covered in the first part of the trip

During the first part, she rides for 26.8 minutes at an average speed of 7.57 m/s

That is,

Average speed, v = 7.57 m/s

and time, t = 26.8 minutes

Convert the time to seconds

∴ t = 26.8 minutes = (26.8 × 60) secs = 1608 secs

Average speed = \frac{Distance }{ Time}

Then, Distance = Average speed × Time

Hence, for the first part

Distance = 7.57 × 1608

Distance = 12172.56 m

This is the distance covered in the first part of the trip.

  • For the distance covered in the second part of the trip

During the second part, she rides for 42.4 minutes at an average speed of 3.17 m/s

That is, Average speed, v = 3.17 m/s

and time, t = 42.4 minutes

Convert the time to seconds

∴ t = 42.4 minutes = (42.4 × 60) secs = 2544 secs

From,

Distance = Average speed × Time

Distance = 3.17 × 2544

Distance = 8064.48 m

This is the distance covered in the second part of the trip.

  • For the distance covered in the third part of the trip

During the third part, she rides for 9.69 minutes at an average speed of 15.0 m/s

That is, Average speed, v = 15.0 m/s

and time, t = 9.69 minutes

Convert the time to seconds

∴ t = 9.69 minutes = (9.69 × 60) secs = 581.4 secs

From,

Distance = Average speed × Time

Distance = 15.0 × 581.4

Distance = 8721 m

This is the distance covered in the third part of the trip.

Now for the distance covered during the entire trip,

Total distance = distance covered in the first part of the trip + distance covered in the second part of the trip + distance covered in the third part of the trip

Hence,

Total distance = 12172 m + 8064.48 m + 8721 m

Total distance = 28958.04 m

Hence, she has traveled a total distance of 28958.04 m during the entire trip.

(b) For her average velocity for the trip

Average velocity is given by

Average velocity =  \frac{Total distance traveled}{Total time}

Total distance traveled = 28958.04 m

Total time = 1608 secs + 2544 secs + 581.4 secs

Total time = 4733.4 secs

Hence,

Average velocity =  \frac{28958.04}{4733.4}

Average velocity = 6.1178 m/s

Average velocity ≅ 6.12 m/s

You might be interested in
An electric furnace is to melt 40 kg of aluminium/hour. The initial temperature of aluminium is 32°C. Given that aluminium has s
gizmo_the_mogwai [7]

Answer:

Part a)

P = 13.93 kW

Part b)

R = 8357.6 Cents

Explanation:

Part A)

heat required to melt the aluminium is given by

Q = ms\Delta T + mL

here we have

Q = 40(950)(680 - 32) + 40(450 \times 10^3)

Q = 24624 kJ + 18000 kJ

Q = 42624 kJ

Since this is the amount of aluminium per hour

so power required to melt is given by

P = \frac{Q}{t}

P = \frac{42624}{3600} kW

P = 11.84 kW

Since the efficiency is 85% so actual power required will be

P = \frac{11.84}{0.85} = 13.93 kW

Part B)

Total energy consumed by the furnace for 30 hours

Energy = power \times time

Energy = 13.93 kW\times 30 h

Energy = 417.9 kWh

now the total cost of energy consumption is given as

R = P \times 20 \frac{Cents}{kWh}

R = 417.9 kWh\times  20 \frac{cents}{kWh}

R = 8357.6 Cents

3 0
3 years ago
The mass of a string is 7.7 × 10-3 kg, and it is stretched so that the tension in it is 190 N. A transverse wave traveling on th
Scilla [17]

Length of the strings = 2.33 m

3 0
3 years ago
The gravitational force between two objects is 100 N.
defon
200N is the answer (at least thats what I think)
5 0
3 years ago
What is the goal of scientific methods?
Ksivusya [100]

The goal of scientific method is to produce public knowledge. That is knowledge available to any person with sufficient education, all such knowledge can be verified by or deduced from experiments and observations.

5 0
3 years ago
An object 82 cm high forms a virtual image 4.1 cm high located 4.6 cm behind a mirror. Find the object distance.
ioda

Answer:

The object distance is 92 cm.  

Explanation:

let v be the image distance and h be the height of the image, let u the be the object distance and H be the height of the object.

then, the magification of the mirror is given by:

m = -v/u and m = h/H

so, -v/u = h/H

         u = -v×H/h

            = -(-4.6)×(82)/(4.1)

            = 92 cm

Therefore, the object distance is 92 cm.

8 0
3 years ago
Other questions:
  • In a series circuit with three bulbs,
    14·1 answer
  • A thin coil has 16 rectangular turns of wire. When a current of 3 A runs through the coil, there is a total flux of 4 × 10-3 T·m
    7·1 answer
  • A battery with an emf of 1.50 V has an internal resistance r. When connected to a resistor R, the terminal voltage is 1.40 V and
    15·1 answer
  • A pitcher throws a 0.144-kg baseball toward the batter so that it crosses home plate horizontally and has a speed of 42 m/s just
    8·1 answer
  • Identify the physical property of a material that is NOT a good conductor of heat.
    9·1 answer
  • What is the equivalent resistance of the circuit? A: 0.500 ohms B: 120.0 ohms C: 2.00 ohms D: 60.0 ohms
    12·2 answers
  • A ball of mass 0.600 kg is carefully balanced on a shelf that is 2.20 m above the ground. What is its gravitational potential en
    12·1 answer
  • if a car is moving down the highway at a constant velocity what does this mean about the cars acceleration?
    8·1 answer
  • Please help i will mark brainliest
    10·2 answers
  • 1.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!