Answer:
See explanation and image attached
Explanation:
My aim is to convert 1-bromobutane to butanal. The first step is to react the 1-bromobutane substrate with water. This reaction occurs by SN2 mechanism to yield 1-butanol. Hence reagent A is water.
1-butanol is now reacted with an oxidizing agent such as acidified K2Cr2O7 (reagent B) to yield butanal. Note that primary alkanols are oxidized to alkanals.
These sequence of reactions are shown in the image attached.
It is an example of a molecule
Answer: 66.66 ml
Explanation: Using Molarity equation:
(stock solution)=
(solution to be prepared)
given: 



(stock solution)=
(solution)

Answer:
6116g
Explanation:
2SO2(g) + O2(g) + 2H2O(ℓ) −→ 2H2SO4(ℓ)
We want to find the mass in grams of SO2 that is needed to react with 1527 g of O2. First we must convert the grams of O2 to moles of O2 then to moles of SO2 and then to grams of SO2
So first lets find the molar mass of O2
The mass of oxygen according to a periodic table is 15.999
Using this the mass of O2 would be 15.999(2) = 31.988g
Next we need to identify the mole ratio of O2 to SO2
Looking at the equation for 1 mole of O2 there are two moles of SO2
Next we need to find the molar mass of SO2
Again the mass of oxygen is 15.999g and the mass of Sulfur is 32.066
So the mass of SO2 would be 15.999(2) + 32.066 = 64.064g
Now that we have found all the needed conversions :
We can now use dimensional analysis to calculate the answer.
Kindly check the attached image to see the table. ( sorry if its a bit blurry )
Explanation : The conversions are used to cancel out the units to get to the final unit which is gSO2.
Once the units are cancelled out except for the gSO2 we mutliply and divide based off of what the table says to do.
Here first we divide 1527 by 31.988. We than multiply by 2. Finally we multiply by 64.064 to get the final answer which is 6116gSO2
Answer:
Option a. is correct.
Explanation:
Gas exchange refers to the the elimination of carbon dioxide from the bloodstream to the lungs and delivery of oxygen from the lungs to the bloodstream. The actual gas exchange happens in the lungs between the alveoli and capillaries (a network of tiny blood vessels). Capillaries are located in the walls of the alveoli.