1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Verdich [7]
3 years ago
5

Which two continentes does the gulf stream warm?

Physics
1 answer:
Minchanka [31]3 years ago
6 0
The Gulf Stream warms North America and Europe. (C)
You might be interested in
Which inference about Arthur is supported by the text?
yarga [219]
There is no picture
8 0
3 years ago
A 20 kg bike accelerates at 10 m/s2. What was the force?
agasfer [191]

Answer:

200 N = 200 Newtons

Explanation:

Just use the formula F = m*a

F = Force in Newtons

m = mass and is 20 kg

a = acceleration and is 10 m/s^2

F = 20 * 10

F = 200 Newtons.

7 0
3 years ago
An airplane is heading due south at a speed of 690 km/h . A) If a wind begins blowing from the southwest at a speed of 90 km/h (
Afina-wow [57]

Answer:a) 629,5851 km/h in magnitude b)629,5851 km/h at 84,2 degrees from east pointing south direction or in vector form 626,6396 km/h south + 63,6396km/h  east. c) 16,5 km NE of the desired position

Explanation:

Since the plane is flying south at 690 km/h and the wind is blowing at assumed constant speed of 90 km/h from SW, we get a triangle relation where

 

see fig 1

Then we can decompose those 90 km/h into vectors, one north and one east, both of the same magnitude, since the angle is 45 degrees with respect to the east, that is direction norhteast or NE, then

90 km/h NE= 63,6396 km/h north + 63,6396 km/h east,

this because we have an isosceles triangle, then the cathetus length is  

hypotenuse/\sqrt{2}

using Pythagoras, here the hypotenuse is 90, then the cathetus are of length

90/\sqrt{2} km/h= 63,6396 km/h.  

Now the total speed of the plane is

690km/h south + 63,6396 km/h north +63,6396 km/h east,

this is 626,3604 km/h south + 63,6396 km/h east,  here north is as if we had -south.

then using again Pythagoras we get the magnitude of the total speed it is

\sqrt{626,3604 ^2+63,6396^2} km/h=629,5851km/h,

the direction is calculated with respect to the south using trigonometry, we know the

sin x= cathetus opposed / hypotenuse,

then

x= sin^{-1}'frac{63,6396}{629,5851}=5,801 degrees from South as reference (0 degrees) in East direction or as usual 84,2 degrees from east pointing south or in vector form

626,6396 km/h south + 63,6396km/h  east.

Finally since the detour is caused by the west speed component plus the slow down caused by the north component of the wind speed, we get

Xdetour{east}= 63,6396 km/h* (11 min* h)/(60 min)=11,6672 km=Xdetour{north} ,

since 11 min=11/60 hours=0.1833 hours.

Then the total detour from the expected position, the one it should have without the influence of the wind, we get  

Xdetour=[/tex]\sqrt{2*  11,6672x^{2} }[/tex]  = 16,5km at 45 degrees from east pointing north

The situation is sketched as follows  see fig 2

 

4 0
3 years ago
A traffic light is weighing 200N hangs from a vertical cable tied to two other cables that are fastened to a support. The upper
Levart [38]

Answer:

T₁ = 93.6 N , T₂ = 155.6 N , T₃ = 200 N

Explanation:

This is a balance exercise where we must apply the expressions for translational balance in the two axes

     ∑  F = 0

Suppose that cable t1 goes to the left and the angles are 41º with respect to the horizontal and cable t2 goes to the right with angles of 63º

decompose the tension of the two upper cables

          cos 41 = T₁ₓ / T1

          sin 41 = T₁y / T1

          T₁ₓ = T₁  cos 41

          T₁y= T₁  sin 41

for cable gold

           cos 63 = T₂ / T₂

           sin 63 = T_{2y} / T₂

We apply the two-point equilibrium equation: The junction point of the three cables and the point where the traffic light joins the vertical cable.

Let's start by analyzing the point where the traffic light meets the vertical cable

              T₃ - W = 0

              T₃ = W

              T₃ = 200 N

now let's write the equations for the single point of the three wires

X axis

   - T₁ₓ + T₂ₓ = 0

  T₁ₓ = T₂ₓ

   T1 cos 41 = T2 cos 63

   T1 = T2 cos 63 / cos 41                (1)

y Axis

      T_{1y} + T_{2y} - T3 = 0

       T₁ sin 41 + T₂ sin 63 = T₃          (2)

to solve the system we substitute equation 1 in 2

        T₂ cos 63 / cos 41 sin 41 + T₂ sin 63 = W

         T₂ (cos 63 tan 41 + sin 63) = W

         T₂ = W / (cos 63 tan 41 + sin 63)

We calculate

          T₂ = 200 / (cos 63 tan 41 + sin 63)

          T₂ = 200 / 1,2856

           T₂ = 155.6 N

we substitute in 1

            T₁ = T₂ cos 63 / cos 41

             T₁ = 155.6 cos63 / cos 41

             T₁ = 93.6 N

therefore the tension in each cable is

            T₁ = 93.6 N

             T₂ = 155.6 N

             T₃ = 200 N

6 0
3 years ago
2. A pair of narrow, parallel slits sep by 0.25 mm is illuminated by 546 nm green light. The interference pattern is observed on
Agata [3.3K]

Answer:

for the first interference m = 1   y = 2,839 10-3 m

for the second interference m = 2   y = 5,678 10-3 m

Explanation:

The double slit interference phenomenon, for constructive interference is described by the expression

                d sin θ = m λ

where d is the separation between the slits, λ the wavelength and m an integer that corresponds to the interference we see.

In these experiments in general the observation screen is L >> d, let's use trigonometry to find the angles

           tan θ = y / L

with the angle it is small,

          tan θ = sin θ / cos θ = sin θ

   

we substitute

         sin θ = y / L

         d y / L = m λ

the distance between the central maximum and an interference line is

        y = m λ L / d

let's reduce the magnitudes to the SI system

     λ = 546 nm = 546 10⁻⁹ m

     d = 0.25 mm = 0.25 10⁻³ m

let's substitute the values

      y = m 546 10⁻⁹ 1.3 / 0.25 10⁻³

      y =  m 2,839 10⁻³

the explicit value for a line depends on the value of the integer m, for example

for the first interference m = 1

the distance from the central maximum to the first line is y = 2,839 10-3 m

for the second interference m = 2

the distance from the central maximum to the second line is y = 5,678 10-3 m

3 0
3 years ago
Other questions:
  • A solution is prepared by dissolving 49.3 g of KBr in enough water to form 473 mL of solution. Calculate the mass % of KBr in th
    5·1 answer
  • Tectonic plates move due to _____ forces.
    14·2 answers
  • Is polarization possible for longitudinal waves ?
    5·1 answer
  • Which of the following statements about the force on a charged particle due to a magnetic field are not valid?
    10·1 answer
  • A car with a mass of 650 kg is moving with a speed of 20m/s. Calculate the kinetic energy of the car?
    12·1 answer
  • 3. The picture below is an example of a _______ _________<br> (Answer is 2 words)
    12·1 answer
  • 9. Kokio dydžo Archimedo jėga veikia 0,5 m² tūrio medinį rastą vandenyje?​
    6·1 answer
  • Which quote best reveals why sowers was successful in achieving her goal?
    10·1 answer
  • The following equation, N2 + 3 H2 —&gt;2 NH3 ,describes a
    15·2 answers
  • Determine the image distance and image height for a 5.00 cm tall object placed 30.0 cm from a double convex lens with a focal le
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!