The net force acting on a box of mass 8.0kg that experiences an acceleration of 4.0m/s² is 32N. Details about net force can be found below.
<h3>How to calculate net force?</h3>
The net force of a body can be calculated by multiplying the mass of the body by its acceleration as follows:
Force = mass × acceleration
According to this question, a box with a mass of 8.0 kg is sitting on a frictionless surface and experiences an acceleration of 4.0 m/s2 to the right.
Net force = 8kg × 4m/s²
Net force = 32N
Therefore, the net force acting on a box of mass 8.0kg that experiences an acceleration of 4.0m/s² is 32N.
Learn more about net force at: brainly.com/question/18031889
#SPJ1
Answer:
The velocity of the wave is 12.5 m/s
Explanation:
The given parameters are;
he frequency of the tuning fork, f = 250 Hz
The distance between successive crests of the wave formed, λ = 5 cm = 0.05 m
The velocity of a wave, v = f × λ
Where;
f = The frequency of the wave
λ = The wavelength of the wave - The distance between crests =
Substituting the known values gives;
v = 250 Hz × 0.05 m = 12.5 m/s
The velocity of the wave, v = 12.5 m/s.
Answer:

Explanation:
<u>Coulomb's Law</u>
The force between two charged particles of charges q1 and q2 separated by a distance d is given by the Coulomb's Law formula:

Where:

q1, q2 = the objects' charge
d= The distance between the objects
We know both charges are identical, i.e. q1=q2=q. This reduces the formula to:

Since we know the force F=1 N and the distance d=1 m, let's find the common charge of the spheres solving for q:

Substituting values:


This charge corresponds to a number of electrons given by the elementary charge of the electron:

Thus, the charge of any of the spheres is:

