Answer:
Proof in explanataion
Explanation:
The basic dimensions are as follows:
MASS = M
LENGTH = L
TIME = T
i)
Given equation is:

where,
H = height (meters)
u = speed (m/s)
g = acceleration due to gravity (m/s²)
Sin Ф = constant (no unit)
So there dimensions will be:
H = [L]
u = [LT⁻¹]
g = [LT⁻²]
Sin Ф = no dimension
Therefore,
![[L] = \frac{[LT^{-1}]^2}{[LT^{-2}]}\\\\\ [L] = [L^{(2-1)}T^{(-2+2)}]](https://tex.z-dn.net/?f=%5BL%5D%20%3D%20%5Cfrac%7B%5BLT%5E%7B-1%7D%5D%5E2%7D%7B%5BLT%5E%7B-2%7D%5D%7D%5C%5C%5C%5C%5C%20%5BL%5D%20%3D%20%5BL%5E%7B%282-1%29%7DT%5E%7B%28-2%2B2%29%7D%5D)
<u>[L] = [L]</u>
Hence, the equation is proven to be homogenous.
ii)

where,
F = Force = Newton = kg.m/s² = [MLT⁻²]
G = Gravitational Constant = N.m²/kg² = (kg.m/s²)m²/kg² = m³/kg.s²
G = [M⁻¹L³T⁻²]
m₁ = m₂ = mass = kg = [M]
r = distance = m = [L]
Therefore,
![[MLT^{-2}] = \frac{[M^{-1}L^{3}T^{-2}][M][M]}{[L]^2}\\\\\ [MLT^{-2}] = [M^{(-1+1+1)}L^{(3-2)}T^{-2}]\\\\](https://tex.z-dn.net/?f=%5BMLT%5E%7B-2%7D%5D%20%3D%20%5Cfrac%7B%5BM%5E%7B-1%7DL%5E%7B3%7DT%5E%7B-2%7D%5D%5BM%5D%5BM%5D%7D%7B%5BL%5D%5E2%7D%5C%5C%5C%5C%5C%20%5BMLT%5E%7B-2%7D%5D%20%3D%20%5BM%5E%7B%28-1%2B1%2B1%29%7DL%5E%7B%283-2%29%7DT%5E%7B-2%7D%5D%5C%5C%5C%5C)
<u>[MLT⁻²] = [MLT⁻²]</u>
Hence, the equation is proven to be homogenous.
Since the device is a speedometer, the data it read is the speed of the racecar. Data recording involving time usually uses time as the independent variable. It was also said in the problem that it records the speed every second which shows that the time interval is constant. This means that only other data, the car's speed, is the dependent variable.
Answer:
Zero
Explanation:
Two long parallel wires each carry the same current I in the same direction. The magnetic field in wire 1 is given by :

Magnetic force acting in wire 2 due to 1 is given by :


Similarly, force acting in wire 1 is given by :
According to third law of motion, the force acting in wire 1 will be in opposite direction to wire 2 as :

So, the total magnetic field at the point P midway between the wires is in what direction will be zero as the the direction of forces are in opposite direction.
Answer:
The resistance interval is 
Explanation:
From the question we are told that
The voltage is V = 9 V
The current is 
The maximum current would be

The minimum current would be

The maximum resistance is



The minimum resistance is



and 
The interval R lies is

The superconducting magnets are able to generate powerful magnetic fields because they have no electrical resistance.
To find the answer, we have to know more about the superconducting magnets.
<h3>What is superconducting magnet?</h3>
- An example of an electromagnet is a superconducting magnet.
- They are constructed from coils of superconducting wire and must be used while being chilled to cryogenic temperatures.
- Because the wire encircling the magnet has no electrical resistance when it is in its superconducting condition, they may produce powerful magnetic fields.
- Because of this, the magnet can conduct far greater electrical currents than the typical electromagnet.
Thus, we can conclude that, the superconducting magnets are able to generate powerful magnetic fields because they have no electrical resistance.
Learn more about the superconducting magnets here:
brainly.com/question/1476682
#SPJ4