1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elena L [17]
3 years ago
15

Name and describe the apparatus used by Cavendish to discover the universal gravitation constant

Physics
1 answer:
Evgen [1.6K]3 years ago
3 0
Its like a suspended wood with a lead sphere attached to each of its ends
You might be interested in
Consider a hydrogen atom in the n = 1 state. The atom is placed in a uniform B field of magnitude 2.5 T. Calculate the energy di
dlinn [17]

Answer:

E=29\times 10^{-5}eV

Explanation:

For n-=1 state hydrogen energy level is split into three componets in the presence of external magnetic field. The energies are,

E^{+}=E+\mu B,

E^{-}=E-\mu B,

E^{0}=E

Here, E is the energy in the absence of electric field.

And

E^{+} and E^{-} are the highest and the lowest energies.

The difference of these energies

\Delta E=2\mu B

\mu=9.3\times 10^{-24}J/T is known as Bohr's magneton.

B=2.5 T,

Therefore,

\Delta E=2(9.3\times 10^{-24}J/T)\times 2.5 T\\\Delta E=46.5\times 10^{-24}J

Now,

Delta E=46.5\times 10^{-24}J(\frac{1eV}{1.6\times 10^{-9}J } )\\Delta E=29.05\times 10^{-5}eV\\Delta E\simeq29\times 10^{-5}eV

Therefore, the energy difference between highest and lowest energy levels in presence of magnetic field is E=29\times 10^{-5}eV

6 0
3 years ago
Compare and contrast electric motors and generators.
Marrrta [24]
Electric motors require electricity to move the motor parts and do work (like an electric fan).

Elecgric generators actually burn diesel fuel to spin a motor around and around and around to GENERATE, or MAKE, electricity that you can then use to power your fans and lights in your house.
6 0
3 years ago
Read 2 more answers
In order to find the resultant of two vectors we must use the pythagoran therom, a +b2-2. Where the crepresents the resultant ve
nadezda [96]

Answer:

Furthermore, the Pythagorean theorem works when the two added vectors are at right angles to one another - such as for adding a north vector and an east vector.

8 0
3 years ago
PLEASE HELP HDJFJDJDJJCJDJDJFJD
GenaCL600 [577]

Answer:

Explanation:

free

5 0
3 years ago
A catapult launches a test rocket vertically upward from a well, giving the rocket an initial speed of 80.6 m/s at ground level.
kow [346]

Before the engines fail, the rocket's altitude at time <em>t</em> is given by

y_1(t)=\left(80.6\dfrac{\rm m}{\rm s}\right)t+\dfrac12\left(3.90\dfrac{\rm m}{\mathrm s^2}\right)t^2

and its velocity is

v_1(t)=80.6\dfrac{\rm m}{\rm s}+\left(3.90\dfrac{\rm m}{\mathrm s^2}\right)t

The rocket then reaches an altitude of 1150 m at time <em>t</em> such that

1150\,\mathrm m=\left(80.6\dfrac{\rm m}{\rm s}\right)t+\dfrac12\left(3.90\dfrac{\rm m}{\mathrm s^2}\right)t^2

Solve for <em>t</em> to find this time to be

t=11.2\,\mathrm s

At this time, the rocket attains a velocity of

v_1(11.2\,\mathrm s)=124\dfrac{\rm m}{\rm s}

When it's in freefall, the rocket's altitude is given by

y_2(t)=1150\,\mathrm m+\left(124\dfrac{\rm m}{\rm s}\right)t-\dfrac g2t^2

where g=9.80\frac{\rm m}{\mathrm s^2} is the acceleration due to gravity, and its velocity is

v_2(t)=124\dfrac{\rm m}{\rm s}-gt

(a) After the first 11.2 s of flight, the rocket is in the air for as long as it takes for y_2(t) to reach 0:

1150\,\mathrm m+\left(124\dfrac{\rm m}{\rm s}\right)t-\dfrac g2t^2=0\implies t=32.6\,\mathrm s

So the rocket is in motion for a total of 11.2 s + 32.6 s = 43.4 s.

(b) Recall that

{v_f}^2-{v_i}^2=2a\Delta y

where v_f and v_i denote final and initial velocities, respecitively, a denotes acceleration, and \Delta y the difference in altitudes over some time interval. At its maximum height, the rocket has zero velocity. After the engines fail, the rocket will keep moving upward for a little while before it starts to fall to the ground, which means y_2 will contain the information we need to find the maximum height.

-\left(124\dfrac{\rm m}{\rm s}\right)^2=-2g(y_{\rm max}-1150\,\mathrm m)

Solve for y_{\rm max} and we find that the rocket reaches a maximum altitude of about 1930 m.

(c) In part (a), we found the time it takes for the rocket to hit the ground (relative to y_2(t)) to be about 32.6 s. Plug this into v_2(t) to find the velocity before it crashes:

v_2(32.6\,\mathrm s)=-196\frac{\rm m}{\rm s}

That is, the rocket has a velocity of 196 m/s in the downward direction as it hits the ground.

3 0
3 years ago
Other questions:
  • There are five basic health-related components that one must have in order to be physically fit.
    12·1 answer
  • Small rock substances that orbit the sun in groups is called
    7·1 answer
  • An electric current is created in a long thin wire. How will increasing the current and changing the direction of the current ef
    6·2 answers
  • Which of the following best describes a property of water?
    12·2 answers
  • A strand of 10 lights is plugged into an outlet. How can you determine if the lights are connected in series or paralle
    7·1 answer
  • On a frozen pond, a 10.3 kg sled is given a kick that imparts to it an initial speed of vo = 1.64 m/s. The coefficient of kineti
    15·1 answer
  • Fun Fact:
    13·1 answer
  • 11 cm/s2 is an example of<br> 30 m/s northwest is an example of
    6·1 answer
  • A horizontal force of 300.0 N is used to push a 145-kg mass 30.0 m horizontally in 3.00 s. Calculate the power developed.
    6·1 answer
  • If you drop an object, it will accelerate downward at a rate of 9.8 meters per second per second. if you instead throw it downwa
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!