W=mgh
W=(6)(9.8)(4)
W= 235.2J
Answer:0.669
Explanation:
Given
mass of clock 93 kg
Initial force required to move it 610 N
After clock sets in motion it requires a force of 514 N to keep moving it with a constant velocity
Initially static friction is acting which is more than kinetic friction
thus 613 force is required to overcome static friction


Answer:
2.7067 eV
Explanation:
h = Planck's constant = 
c = Speed of light = 
= Threshold wavelength = 459 nm
Work function is given by

Converting to eV


The work function W0 of this metal is 2.7067 eV
Answer:
F₂= 210 pounds
Explanation:
Conceptual analysis
Hooke's law
Hooke's law establishes that the elongation (x) of a spring is directly proportional to the magnitude of force (F) applied to it, provided that said spring is not permanently deformed:
F= K*x Formula (1)
Where;
F is the magnitude of the force applied to the spring in Newtons (Pounds)
K is the elastic spring constant, which relates force and elongation. The higher its value, the more work it will cost to stretch the spring. (Pounds/inch)
x the elongation of the spring (inch)
Data
The data given is incorrect because if we apply them the answer would be illogical.
The correct data are as follows:
F₁ =80 pounds
x₁= 8 inches
x₂= 21 inches
Problem development
We replace data in formula 1 to calculate K :
F₁= K*x₁
K=( F₁) / (x₁)
K=( 80) / (8) = 10 pounds/ inche
We apply The formula 1 to calculate F₂
F₂= K*x₂
F₂= (10)*(21)
F₂= 210 pounds
Before the skydiver opens the parachute, his velocity would be increasing greatly as much as 9.8 m/s². Opening the parachute would increase the surface area to which air may cause resistance. The skydiver then reaches his terminal velocity.